THE FARRAR-GLAUBAR APPROACH IN TESTING FOR MULTICOLLINEARITY IN ECONOMIC DATA
DOI:
https://doi.org/10.53555/bma.v3i3.1718Keywords:
multicollinearity, farrar-glaubar, economic data, Dependent VariablesAbstract
This research aims at determining the presence of Multicollinearity in a function using farrar-glaubar test approach. In most economic data, there is the presence of Multicollinearity but the severity varies. The degree of this multicollinearity may vary from function to function. However, Farrar-Glaubar test is used to detect the presence and severity of Multicollinearity, location of Multicollinearity, and the pattern of Multicollinearity in a function. How to correct the effect of Multicollinearity was also covered this research. After analyses were done on the collected data, we realized that, Multicollinearity is most pronounced in Economic data.
Downloads
References
Aldrich, John (2005). “Fisler and Regression” Statistical Science. 20(4): 401- 417.
Armstrong, J. Scot (2012). “Illusions in Regression Analysis”. International Journal of Forecasting. 28 (3): 689.
Becker, A.J., and Hoover E., M. (1998) Population Growth and Economic Development in Low-Income Countries. Princeton: Princeton University Press, 610-619. CIA World facts books, Vol. 5, No. 1, 2011: 89-95.
Cressie, N. (1996) “Change of Support and the Modiable Area Unit Problem” Geographical Systems 3: 169 – 180.
David A. Freedom (2005), Statistical Models: Theory and Practice, Cambridge University Press.
Fotheringham, AS; Wong, DWS (1st Jan, 2002). “The Modifiable Area Unit Problem in Multivariate Statistical Analysis” in Environment and Planning. A. 23(7): 1025 – 1044.
Kutner, M.H., C.J Nachtshein, and J. Neter (2004), Applied Linear Regression Models. 25(7): 25 – 31.
Smith, J.B. (1997). Effects of eighth-grade transition programs on high school retention and experiences. The Journal of Educational Research, 90 (3): 144 – 152.
Thirwal, Dolf (2007) “Growth and Development with Special Reference to Developing Economies”, University of Kent at Canterbury, 5th Edition. 111 (8): 143 – 155.
Tofallis, C. (2009). “Least Squares Percentage Regression”. Journal of Modern Applied Statistical Methods. 7: 526 – 534.
Waegeman, Willem; De Baets, Bernanrd; Boullart, Luc (2009). “Roc analysis in Ordinal Regression Learning” Pattern Recognition Learning” Pattern Recognition Letters. 29:1-9.
Yang Jing Long (2009). “Human Age Estimation by Metric Learning for Regression Problems”. 21(6): 74 – 82.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Green Publication
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All journals related to business, management, and accounting can be freely copied, circulated, and reprinted in Green Publication journals, as long as they are duly referenced by original authors. Green Publication follows CC licenses. “A Creative Commons (CC) license is one of the public copyright licenses that allows for the free reuse of an otherwise copyrighted "work." If an author wants to give others the right to publish, use, and build on a work created by the author, he may use a CC license. Green publication use the CC 4.0 license. This license allows anyone to write, remix, tweak, and build on your work, even commercially, as long as the original creation is attributed to you”. This is the most appropriate license available. Recommended for increasing the distribution and use of licensed products.