The Study of Conditional Probability Matrix for Realive Pair Genotypes

Authors

  • Chaobing He School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China

DOI:

https://doi.org/10.53555/ms.v7i12.1954

Keywords:

quasi conditional probability matrix, ITO method, relative pair, genotype, Hardy-Weinberg equilibrium law

Abstract

This paper considers the conditional probability matrix for realive pair genotypes. First this paper systematically introduces HardyWeinberg equilibrium law, the joint probability distributions for relative pair genotypes and the ITO method. Then this paper discusses the calculation of probability distribution of the number of identical-by-descent allele of relative pairs, and lists the probabilities in tables. The paper gives the definition of quasi conditional probability matrix for the realive pair genotypes, and obtains a conclusion about quasi conditional probability matrix.

Downloads

Download data is not yet available.

References

C. C. Li, L. Sacks, The derivation of joint distribution and correlation between relatives by the use of stochastic matrices, Biometrics 10 (3) (1954) 347{360.

W. H. Richardson, Frequencies of genotypes of relatives, as determined by stochastic matrices, Genetica 35 (1964) 323{354.

E. R. C. Campbell M A, Relatives of probands: models for preliminary genetic analysis, Annals of human genetics 35 (1971) 225{236.

D. Feng, D. E. Weeks, Ordered genotypes: An extended ito method and a general formula for genetic covariance, American Journal of Human Genetics 78 (6) (2006) 1035{1045.

W. Li, An exact calculation of the probability of identity-by-descent in twolocus models using an extension of the li-sacks.method, American journal of human genetics 63 (1998) A297.

M. P. Epstein, W. L. Duren, M. Boehnke, Improved inference of relationship for pairs of individuals, The American Journal of Human Genetics 67 (5) (2000) 1219{1231.

R. S. Legro, R. Spielman, M. Urbanek, D. Driscoll, J. F. Strauss, A. Dunaif, Phenotype and genotype in polycystic ovary syndrome, Recent progress in hormone research 53 (1998) 217{256.

D. O. Stram, C. L. Pearce, P. Bretsky, M. Freedman, J. N. Hirschhorn, D. Altshuler, L. N. Kolonel, B. E. Henderson, D. C. Thomas, Modeling and em estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals, Human heredity 55 (4) (2003) 179{190.

M. Boehnke, N. J. Cox, Accurate inference of relationships in sib-pair linkage studies, The American Journal of Human Genetics 61 (2) (1997) 423{429.

B. A. Rybicki, R. C. Elston, The relationship between the sibling recurrence-risk ratio and genotype relative risk, The American Journal of Human Genetics 66 (2) (2000) 593{604.

D. L. Harris, Genotypic covariances between inbred relatives., Genetics 50 (1964) 1319{1348.

M. Crabtree, I. Tomlinson, S. Hodgson, K. Neale, R. Phillips, R. Houlston, Explaining variation in familial adenomatous polyposis: relationship between genotype and phenotype and evidence for modifier genes, Gut 51 (3) (2002) 420{423.

M. R. Robinson, G. English, G. Moser, L. R. Lloyd-Jones, M. A. Triplett, Z. Zhu, I. M. Nolte, J. V. van Vliet-Ostaptchouk, H. Snieder, T. Esko, et al., Genotype{covariate interaction effects and the heritability of adult body mass index, Nature genetics 49 (8) (2017) 1174{1181.

G. H. Hardy, Mendelian proportions in a mixed population, Science 28 (1954) 49{50.

W. Weinberg, Uber den nachweis der vererbung beim menschen, ¨ Jahreshefte des Vereins f¨ur Vaterl¨andische Naturkunde in W¨urttemberg 64 (1908) 368{382.

Downloads

Published

2021-12-31

How to Cite

He, C. . (2021). The Study of Conditional Probability Matrix for Realive Pair Genotypes. International Journal For Research In Mathematics And Statistics, 7(12), 01–12. https://doi.org/10.53555/ms.v7i12.1954