Effects of the Liposomal Co-Encapsulation of Antigen and PO-CpG Oligonucleotide on Immune Response in Mice

Authors

  • Carolina Veautea Laboratorio de Inmunología Básica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje
  • Ivana Gabriela Reidel Laboratorio de Inmunología Básica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo s/n, S3000ZAA, Santa Fe, Argentina

DOI:

https://doi.org/10.53555/ans.v3i6.81

Keywords:

Vaccines, adjuvant, liposomes, CpG-ODN,, humoral response, IFN-γ.

Abstract

The development of novel vaccines requires the design of new adjuvants able to give long lasting
immune responses. Our aim was to obtain cationic liposomes as adjuvants by an industry-suitable
method, and evaluate them using bovine serum albumin (BSA) as immunogen and CpG oligonucleotides with phosphodiesther bonds, as immunostimulants. Liposomes (Lip) were
prepared with dipalmitoylphosphatidylcholine, cholesterol and stearylamine by Ethanol Injection
method. Immune response was assessed by immunization of Balb/c mice with: Lip+BSA
Lip+BSA+CpG, CpG+BSA or aluminium hydroxide (Al(OH)3+BSA). Liposomal formulations were
able to induce high antibody levels. Lip+BSA+CpG led to higher IgG levels than Lip+BSA (p<0.05,
Mann-Whitney) and elicited the highest IgG2a levels. All the formulations induced antigen specific
cellular proliferation, without significant differences, meanwhile Lip+BSA+CpG produced the
highest levels of IFN-γ. These results showed these liposomes are versatile vehicles to potentiate
and target the immune system to vaccination, leading to high humoral and cellular immune
responses.

Downloads

Download data is not yet available.

References

Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11(7), 36-42.

Ada, G. (2005). Overview of vaccines and vaccination. Mol Biotechnol, 29(3), 255-272.

Aguilar, J. C., & Rodriguez, E. G. (2007). Vaccine adjuvants revisited. Vaccine, 25(19), 3752-3762.

Badiee, A., Jaafari, M. R., Samiei, A., Soroush, D., & Khamesipour, A. (2008). Coencapsulation of CpG oligodeoxynucleotides withrecombinant Leishmania major stress-inducible protein 1 in liposome enhances immune response and protection against leishmaniasis in immunized BALB/c mice. Clin Vaccine Immunol, 15(4), 668-674.

Bal, S. M., Hortensius, S., Ding, Z., Jiskoot, W., & Bouwstra, J. A. (2011). Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine, 29(5), 1045-1052.

Balbino, T. A., Gasperini, A. A., Oliveira, C. L., Azzoni, A. R., Cavalcanti, L. P., & de La Torre, L. G. (2012). Correlation of the physicochemical and structural properties of pDNA/cationic liposome complexes with their in vitro transfection. Langmuir, 28(31), 11535-11545.

Ballas, Z. K., Krieg, A. M., Warren, T., Rasmussen, W., Davis, H. L., Waldschmidt, M., et al. (2001). Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. J Immunol, 167(9), 4878-4886.

Barichello, J. M., Ishida, T., & Kiwada, H. (2010). Complexation of siRNA and pDNA with cationic liposomes: the important aspects in lipoplex preparation. Methods Mol Biol, 605, 461-472.

Commander, N. J., Brewer, J. M., Wren, B. W., Spencer, S. A., Macmillan, A. P., & Stack, J. A. (2010). Liposomal delivery of p-ialB and p-omp25 DNA vaccines improves immunogenicity but fails to provide full protection against B. melitensis challenge. Genet Vaccines Ther, 8, 5.

Chu, R. S., Targoni, O. S., Krieg, A. M., Lehmann, P. V., & Harding, C. V. (1997). CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp Med, 186(10), 1623-1631.

Fahmy, T. M., Fong, P. M., Goyal, A., & Saltzman, W. M. (2005). Targeted for drug delivery. Materials Today, 8(8, Supplement), 18-26.

Garçon, N., Leroux-Roels, G., & Cheng, W.-F. (2011). Vaccine adjuvants. Perspectives in Vaccinology, 1(1), 89-113.

Gregoriadis, G. (1990). Immunological adjuvants: a role for liposomes. Immunol Today, 11(3), 89-97.

Gugliotta, L. M., Clementi, L. A., & Vega, J. R. (2010). Particle Size Distribution. Main Definitions and Measurement Techniques. In L. M. Gugliotta & J. R. Vega (Eds.), Measurement ofParticle Size Distribution of Polymer Latexes(pp. 1-58). Kerala, India: Research Signpost -Transworld Research Network.

Gursel, I., Gursel, M., Ishii, K. J., & Klinman, D. M. (2001). Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J Immunol, 167(6), 3324-3328.

Gursel, M., Verthelyi, D., Gursel, I., Ishii, K. J., & Klinman, D. M. (2002). Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J Leukoc Biol, 71(5), 813-820.

Hartmann, G., Weeratna, R. D., Ballas, Z. K., Payette, P., Blackwell, S., Suparto, I., et al. (2000).Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol, 164(3), 1617-1624.

Hartmann, G., Weiner, G. J., & Krieg, A. M. (1999). CpG DNA: a potent signal for growth, activation, andmaturation of human dendritic cells. Proc Natl Acad Sci U S A, 96(16), 9305-9310.

He, P., Zou, Y., & Hu, Z. (2015). Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum Vaccin Immunother, 11(2), 477-488.

ILAR. (2010). Guide for the Care and Use of Laboratory Animals(8th ed.). Washington, D.C.: National Academy Press.

Kim, D., Kwon, S., Rhee, J. W., Kim, K. D., Kim, Y. E., Park, C. S., et al. (2011). Production of antibodies with peptide-CpG-DNA-liposome complex without carriers. BMC Immunol, 12, 29.

Kim, M.-G., Park, J. Y., Shon, Y., Kim, G., Shim, G., & Oh, Y.-K. (2014). Nanotechnology and vaccine development. Asian J Pharm Sci, 9(5), 227-235.

Klinman, D. M., Currie, D., Gursel, I., & Verthelyi, D. (2004). Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol Rev, 199, 201-216.

Koppel, D. E. (1972). Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants. The Journal of Chemical Physics, 57(11), 4814-4820.

Krieg, A. M. (2006). Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov, 5(6), 471-484.

Krishnamachari, Y., & Salem, A. K. (2009). Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv Drug Deliv Rev, 61(3), 205-217.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.

Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., & Fessi, H. (2012). Preparation, characterization and applications of liposomes: state of the art. J Coll Sci Biotech, 1, 147-168.

Leserman, L. (2004). Liposomes as protein carriers in immunology. J Liposome Res, 14(3-4), 175-189.

Maisonneuve, C., Bertholet, S., Philpott, D. J., & De Gregorio, E. (2014). Unleashing the potential of NOD-and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci U S A, 111(34), 12294-12299.

Marrack, P., McKee, A. S., & Munks, M. W. (2009). Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol,9(4), 287-293.

Nascimento, I. P., & Leite, L. C. (2012). Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res, 45(12), 1102-1111.

Perrie, Y., Mohammed, A. R., Kirby, D. J., McNeil, S. E., & Bramwell, V. W. (2008). Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm, 364(2), 272-280.

Shargh, V. H., Jaafari, M. R., Khamesipour, A., Jaafari, I., Jalali, S. A., Abbasi, A., et al. (2012). Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis. Vaccine, 30(26), 3957-3964.

Sivakumar, S. M., Safhi, M. M., Kannadasan, M., & Sukumaran, N. (2011). Vaccine adjuvants -Current status and prospects on controlled release adjuvancity. Saudi Pharm J, 19(4), 197-206.

Song, Y. C., Cheng, H. Y., Leng, C. H., Chiang, S. K., Lin, C. W., Chong, P., et al. (2014). A novel emulsion-type adjuvant containing CpG oligodeoxynucleotides enhances CD8+ T-cell-mediated anti-tumor immunity. J Control Release, 173, 158-165.

Soutullo, A., Garcia, M. I., Bailat, A., Racca, A., Tonarelli, G., & Malan Borel, I. (2005). Antibodies and PMBC from EIAV infected carrier horses recognize gp45 and p26 synthetic peptides. Vet Immunol Immunopathol, 108(3-4), 335-343.

Suzuki, Y., Wakita, D., Chamoto, K., Narita, Y., Tsuji, T., Takeshima, T., et al. (2004). Liposome-encapsulated CpG oligodeoxynucleotides as a potent adjuvant for inducing type 1 innate immunity. Cancer Res, 64(23), 8754-8760.

Wagner, A., Platzgummer, M., Kreismayr, G., Quendler, H., Stiegler, G., Ferko, B., et al. (2006). GMP production of liposomes--a new industrial approach. J Liposome Res, 16(3), 311-319.

Wang, C. H., & Huang, Y. Y. (2003). Encapsulating protein into preformed liposomes by ethanol-destabilized method. Artif Cells Blood Substit Immobil Biotechnol, 31(3), 303-312.

Warren, T. L., Bhatia, S. K., Acosta, A. M., Dahle, C. E., Ratliff, T. L., Krieg, A. M., et al. (2000). APC stimulated by CpG oligodeoxynucleotide enhance activation of MHC class I-restricted T cells. J Immunol, 165(11), 6244-6251.

WHO. (July 2016). Immunization coverage. 2016, from http://www.who.int/mediacentre/factsheets/fs378/en/

Yang, K., Delaney, J. T., Schubert, U. S., & Fahr, A. (2012). Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method. J Liposome Res, 22(1), 31-41.

Yasuda, K., Yu, P., Kirschning, C. J., Schlatter, B., Schmitz, F., Heit, A., et al. (2005). Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J Immunol, 174(10), 6129-6136.

Downloads

Published

2017-06-30

How to Cite

Veautea, C., & Reidel, I. G. (2017). Effects of the Liposomal Co-Encapsulation of Antigen and PO-CpG Oligonucleotide on Immune Response in Mice. International Journal For Research In Applied And Natural Science, 3(6), 01–19. https://doi.org/10.53555/ans.v3i6.81