Strain Measurement Due to Impact in a Split Hopkinson Pressure Bar

Authors

  • José-Angel Diosdado-De-la-Peña Departamento de Ingeniería Mecánica, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 +1.8 km, Comunidad de Palo Blanco, Salamanca, Guanajuato, México, 36885
  • Juan-Manuel González-Capetillo Departamento de Ingeniería Mecánica, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 +1.8 km, Comunidad de Palo Blanco, Salamanca, Guanajuato, México, 36885
  • Héctor Plascencia-Mora Departamento de Ingeniería Mecánica, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 +1.8 km, Comunidad de Palo Blanco, Salamanca, Guanajuato, México, 36885
  • Antonio-de-Jesús Balvantín-García Departamento de Ingeniería Mecánica, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 +1.8 km, Comunidad de Palo Blanco, Salamanca, Guanajuato, México, 36885

DOI:

https://doi.org/10.53555/ans.v4i5.616

Keywords:

Hopkinson Split Bar, Experimental Stress Analysis, Virtual instrument, Impact loading

Abstract

In this work the measurement of strain generated by impact loads is proposed. Some impact tests are listed, from which the Hopkinson Split Pressure Bar (SHPB) is selected. We present the design of the equipment manufactured and used in this work. The materials and equipment needed to carry out the impact test are proposed, as well as how the strain measurement system should be installed. In the test performed, it is identified that the elements of the SHPB are similarly deformed when tested independently. Thus, there is evidence on the feasibility of  measuring strain and that the system shown can be improved in future developments for impact load.

Downloads

Download data is not yet available.

References

Baranowski, P., Gieleta, R., Malachowski, J., Damaziak, K., & Mazurkiewicz, L. (2014). SPLIT HOPKINSON PRESSURE BAR IMPULSE EXPERIMENTAL MEASUREMENT WITH NUMERICAL VALIDATION. METROLOGY AND MEASUREMENT SYSTEMS, 21(1), 47–58. https://doi.org/10.2478/mms-2014-0005.P.

Chen, W., & Song, B. (2011). Split Hopkinson (Kolsky) Bar: Design, Testing and Applications

(1st ed.). Boston, MA: Springer. https://doi.org/https://doi.org.www.erevistas.ugto.mx/10.1007/978-1-4419-7982-7

HBM Test and Measurement. (2010). Ensayos de materiales con barra de Hopkinson. Retrieved

July 20, 2001, from https://www.hbm.com/es/2996/barra-de-hopkinson/

Kolsky, H. (1949). An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society Section B, 62(11), 676.

https://doi.org/https://doi.org/10.1088/0370-1301/62/11/302

Montgomery, D. C. (2017). Design and analysis of experiments (9th ed.). John Wiley & Sons,

Inc.

Pettarin, V., & Frontini, P. M. (2011). Caracterización de materiales por ensayos de impacto

biaxial instrumentado. In VIII Congreso Regional de ENDE (pp. 1–13). Campana,

Argentina. Retrieved from http://www.aaende.org.ar/corende2011/trabajos/39-pettarinfrontini-completo.pdf

Singh, H. M. (2009). Split Hopkinson Pressure bar simulation using Abaqus. Retrieved from

http://imechanica.org/node/5110.

Vishay Precision Group, I. (2014). M-Bond 600. Retrieved from http://www.vishaypg.com/docs/11014/bond600.pdf

Downloads

Published

2018-05-31

How to Cite

Diosdado-De-la-Peña, J.-A., González-Capetillo, J.-M., Plascencia-Mora, H., & Balvantín-García, A.- de-J. (2018). Strain Measurement Due to Impact in a Split Hopkinson Pressure Bar. International Journal For Research In Applied And Natural Science, 4(5), 01–10. https://doi.org/10.53555/ans.v4i5.616