Different Anode Catalyst Analysis Performance Comparison by Low Temperature Direct Chloro Ethanol Fuel Cell

Authors

  • Ritesh Pathak Reserch Scholar, Mewar University College, Ghaziabad, India
  • B. Tiwari Mewar University, Ghaziabad, India
  • Rakesh Kumar Mewar University, Ghaziabad, India

DOI:

https://doi.org/10.53555/ans.v2i3.111

Keywords:

Direct methanol fuel cell;, Direct ethanol fuel cell, PtRu anode;, PtSn anode

Abstract

The single fuel cell using PtSn/C as anode catalyst at 90 ◦C shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. Lowtemperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode.

Downloads

Download data is not yet available.

References

S.C. Thomas, X.M. Ren, S. Gottsfeld, P. Zelenay, Electrochim. Acta47 (2002) 3741–3748.

H. Dohle, H. Schmitz, T. Bewer, J. Mergel, D. Stolten, J. PowerSources 106 (1–2) (2002) 313–322.

T. Schultz, S. Zhou, K. Sundmacher, Chem. Eng. Technol. 24 (12)(2001) 1223–1233.

V. Antonucci, Fuel Cells Bull. 7 (2002) 6–8.

A.S. Aricò, S. Srinicasan, V. Antonucci, Fuel Cells 1 (2) (2001)1–29.

S. Wasmus, A. Kuver,J. Electroanal. Chem. 461 (1–2) (1999) 14–31.

M. Baldauf, D.M. Kolb, J. Phys. Chem. 100 (1996) 11375–11381.

N.M. Markovic, H.A. Gasteiger, P.N. Ross Jr., Electrochim. Acta40 (1) (1995) 91–98.

S. Park, Y. Xie, M.J. Weaver, Langmuir 18 (2002) 5792–5798.

C. Rice, S. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard,J. Power Sources 111 (2002) 83–89.

T. Zerihun, P. Grundler, J. Electroanal. Chem. 441 (1998) 57–63.

C. Lamy, E.M. Belgsir, J.M. Leger, J. Appl. Electrochem. 31 (2001)799–809.

E. Peled, V. Livshits, T. Duvdevani, J. Power Sources 106 (2002)245–248.

A.S. Aricò, P. Creti, P.L. Antonucci, V. Antonucci, Electrochem.Solid State Lett. 1 (2) (1998) 66–68.

K.T. Adjemain, S. Srinivasan, J. Benziger, A.B. Bocarsly, J. PowerSources 109 (2002) 356–364.

K.W. Park, J.H. Choi, B.K. Kwon, S.A. Lee, Y.E. Sung, H.Y. Ha,S.A. Hong, H. Kim, A. Wieckowski, J. Phy. Chem. B 106 (2002)1869–1877.

B. Gurau, R. Viswanathan, R.X. Liu, T.J. Lafrenz, K.L. Ley, E.S.Smotkin, E. Reddington, A. Sapienza, B.C. Chan, T.E. Mallouk, S.Sarangapani, J. Phys. Chem. B 102 (49) (1998) 9997–10003.

F. Delime, J.M. Léger, C. Lamy, J. Appl. Electrochem. 29 (1999)1249–1254.

C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.M.Léger, J. Power Sources 105 (2002) 283–296.

W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, et al., Appl. Catal. B,in press.

Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, et al., Chem.Commun. 3 (2003) 394–395.

Z.B. Wei, S.L. Wang, B.L.Yi, J.G. Liu, L.K. Chen, W.J. Zhou, W.Z.Li, Q. Xin, J. Power Sources 106 (2002) 364–369.

Z.B. Wei, J.G. Liu, Y.G. Qiao, W.J. Zhou, W.Z. Li, L.K. Chen, B.L.Yi, Q. Xin, Chin. Electrochem. 7 (2001) 228–233.

W.J. Zhou, W.Z. Li, Z.H. Zhou, S.Q. Song, Z.B. Wei, P. Tsiakaras,Q. Xin, Chem. J. Chin. Univ. 5 (2003) 858–862.

A. Hamnett, Catal. Today 38 (4) (1997) 445–457.

H.A. Gasteiger, N. Markoviæ, P.N. Ross Jr., E.J. Cairns, J. Electrochem.Soc. 141 (7) (1994) 1795–1803.

E. Antolini, Mater. Chem. Phys. 78 (2003) 563–573.

A.S. Aricò, A.K. Shukla, K.M. El-Khatib, P. Cret`ı, V. Antonucci, J.Appl. Electrochem. 29 (6) (1999) 671–676.

A. Hamnett, B.J. Kennedy, Electrochim. Acta 33 (11) (1988) 1613–1618.

S.A. Campbell, R. Parsons, J. Chem. Soc., Faraday Trans. 88 (6)(1992) 833–841.

A. Aramata, I. Toyashima, M. Enyo, Electrochim. Acta 37 (8) (1992)1317–1320.

Y. Morimoto, E.B. Yeager, J. Electroanal. Chem. 444 (1) (1998)95–100.

M. Götz, H. Wendt, Electrochim. Acta 43 (24) (1998) 3637–3644.

A.N. Haner, P.N. Ross, J. Phys. Chem. 95 (9) (1991) 3740–3746.

H.A. Gasteiger, N. Markovic, P.N. Ross Jr., J. Phys. Chem. 99 (22)(1995) 8945–8949.

R. Parson, T. Vandernoo, J. Electroanal. Chem. 257 (1988) 9–45.

J.M. Pérez, B. Beden, F. Hahn, A. Aldaz, C. Lamy, J. Electroanal.Chem. 262 (1989) 251–261.

N. Furuya, M. Shibata, J. Electroanal. Chem. 266 (1989) 461–464.

S.C. Chang, L.W. Leung, M.J. Weaver, J. Phys. Chem. 94 (1990)6013–6021.

C.T.Hable, M.S. Wrighton, Langmuir 7 (1991) 1305–1309.

T. Iwasita, E. Pastor, Electrochim. Acta 39 (1994) 531–537.

W.T. Napporn, J.M. Léger, C. Lamy, J. Electroanal. Chem. 408(1996) 141–147.

W.T. Napporn, J.M. Léger, C. Lamy, J. Electroanal. Chem. 404(1996) 153–159.

M.A.A. Rahim, M.W. Khalil, H.B. Hassan, J. Appl. Electrochem.30 (10) (2000) 1151–1155.

M. Watanabe, S. Motoo, J. Electroanal. Chem. 60 (1975) 275–283.[46] S. Mukerjee, J. McBreen, J. Electrochem. Soc. 146 (2) (1999) 600–606.[47] K.Wang, H.A. Gasteiger, N.M. Markovic, P.N. Ross Jr., Electrochim.Acta 41 (16) (1996) 2587–2593

Downloads

Published

2016-03-31

How to Cite

Pathak, R. ., Tiwari, B., & Kumar, R. . (2016). Different Anode Catalyst Analysis Performance Comparison by Low Temperature Direct Chloro Ethanol Fuel Cell. International Journal For Research In Applied And Natural Science, 2(3), 33–42. https://doi.org/10.53555/ans.v2i3.111