Computational Data Analysis of Fourıer Transformatıon by Numerical experiments(Numerical CODE)
DOI:
https://doi.org/10.53555/ms.v5i5.943Keywords:
Numerically, frequency, Fourier series, numerical codeAbstract
The Fourier series (FS) and the Discrete Fourier Transform (DFT) should be thought of as playing similar roles for periodic signals in either continuous time (FS) or discrete time (DFT). Both analyze signals into amplitude, phases, and frequencies of complex exponentials; both synthesize signals by linearly combining complex exponentials with appropriate amplitude, phase, and frequency. Finally, both transforms have aspects that are extremely important to remember and other aspects that are important, but can be adjusted as necessary. As we work through some of the details, we’ll identify these very important and the not so important aspects. Frequency analysis is one of the key issues in the IEEE Society. Using computers in numerical calculations means moving into a non-physical, synthetic environment. Numerically, discrete or fast Fourier transformations (DFT or FFT) are used to obtain the frequency contents of a time signal and these are totally different than mathematical definition of the Fourier transform. This article simple reviews DFT and FFT with characteristic examples.
Downloads
References
Baron Jean Baptiste Fourier (see, e.g., http://bartleby.com/65/fo/Fouriers.html)
HP, “The Fundamentals of Signal Analysis”, Hewlett Packard Application note 243, 1994
L. Sevgi, F. Akleman, L. B. Felsen, “Ground Wave Propagation Modeling: Problem-matched Analytical Formulations and Direct Numerical Techniques”, IEEE Antennas and Propagation Magazine, Vol. 44, No.1, pp.55-75, Feb. 2002
L. Sevgi, Complex Electromagnetic Problems and Numerical Simulation Approaches, IEEE Press – John Wiley and Sons, June 2003
M. Levy, Parabolic equation methods for electromagnetic wave propagation, IEE, Institution of Electrical Engineers, 2000
F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform”, Proc. IEEE, Vol. 66, no. 1, pp.51-83, Jan 1978
Lima, F. (2018) What Exactly Is the Electric Field at the Surface of a Charged Conducting Sphere? Resonance, 23, 1215-1223. https://doi.org/10.1007/s12045-018-0731-y
Assad, G. (2012) Electric Field “On the Surface” of a Spherical Conductor: An Issue to Be Clarified. Revista Brasileira de Fesica, 34, 4701.
Griffiths, D. and Walborn, S. (1999) Dirac Deltas and Discontinuous Functions. American Journal of Physics, 67, 446-447. https://doi.org/10.1119/1.19283
Fedak, W.A. (2002) Quantum Jumps and Classical Harmonics. American Journal of Physics, 70, 332-344. https://doi.org/10.1119/1.1445405
Fan, G.-X. (2004) Fast Fourier Transform for Discontinuous Functions. IEEE Transactions on Antennas and Propagation, 52, 461-465. https://doi.org/10.1109/TAP.2004.823965
Janssen, J.M. (1950) The Method of Discontinuities in Fourier Analysis. Philips Research Reports, 5, 435-460.
Huang, X., Liu, X. and Mi, Y. (2013) The Fourier Series Approach to Investigate Phase-Locking Behaviors of the Sinoatrial Node Cell. Europhysics Letters, 104, Article ID: 38002. https://doi.org/10.1209/0295-5075/104/38002
Thompson, W.J. (1992) Fourier Series and Gibbs Phenomenon. American Journal of Physics, 60, 425. https://doi.org/10.1119/1.16895
Tsagareishvill, V. (2017) On Fourier Coefficients of Functions with Respect to General Orthonormal Systems. Izvestiya Mathematics, 81, 179. https://doi.org/10.1070/IM8394
Kvernadze, G. (2003) Approximating the Jump Discontinuities of a Function by Its Fourier-Jacobi Coefficients. Mathematics of Computation, 73, 731-751. https://doi.org/10.1090/S0025-5718-03-01594-1
[ Ageev, A.L. and Antonova, T.V. (2015) Approximation of Discontinuity Lines for aNoisy Function of Two Variables with Countably Many Singularities.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 International Journal For Research In Mathematics And Statistics (ISSN: 2208-2662)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
In consideration of the journal, Green Publication taking action in reviewing and editing our manuscript, the authors undersigned hereby transfer, assign, or otherwise convey all copyright ownership to the Editorial Office of the Green Publication in the event that such work is published in the journal. Such conveyance covers any product that may derive from the published journal, whether print or electronic. Green Publication shall have the right to register copyright to the Article in its name as claimant, whether separately
or as part of the journal issue or other medium in which the Article is included.
By signing this Agreement, the author(s), and in the case of a Work Made For Hire, the employer, jointly and severally represent and warrant that the Article is original with the author(s) and does not infringe any copyright or violate any other right of any third parties, and that the Article has not been published elsewhere, and is not being considered for publication elsewhere in any form, except as provided herein. Each author’s signature should appear below. The signing author(s) (and, in