Low Separation Axioms Via (1, 2)*-Mmπ-Closed Sets in Biminimal Spaces

Authors

  • K. Mohana Assistant Professor, Department of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India
  • Arockiarani Associate Professor, Department of Mathematics, Nirmala College for Women ,Coimbatore, Tamil Nadu, India
  • S. Jafari Professor of Mathematics, College of Vestsjaelland South Herrestraede 11, 4200, Slagelse

DOI:

https://doi.org/10.53555/ms.v2i1.240

Keywords:

: (1, 2)*-Mmπ- T0, (1, 2)*- Mmπ - T1, (1, 2)*- Mmπ - T2, (1, 2)*- Mmπ - R0, (1, 2)*- Mmπ -R1.

Abstract

The purpose of this paper is to introduce the concepts of (1, 2)*-Mmπ- T0 space, (1, 2)*- Mmπ - T1 space and (1, 2)*- Mmπ - T2 space in a biminimal spaces. We study some of the characterizations and properties of these separation axioms. Further we discuss (1, 2)*- Mmπ -R0 and (1, 2)*- Mmπ -R1 spaces in biminimal spaces. The implications of these axioms among themselves are also investigated,

Downloads

Download data is not yet available.

References

Ashish Kar and Paritosh Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc. 82(1990), 415-422.

S. Athisaya Pomona and M. Lellis Thivagar, Another form of separation Axioms, Methods of Functional Analysis and Topology, Vol. 13(2007), no.4, pp. 380-385.

M. Caldas and S. Jafari, On some low separation axioms in topological spaces, Houston Journal of Math., 29 (2003), 93–104.

M. Caldas, S. Jafari, S. A. Ponmani and M. Lellis Thivagar, On some low separation axioms in bitopological spaces, Bol. Soc. Paran. Mat.(3s) v.24 1- 2(2006);69-78.5.

A. S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Soc., 68 (1961), 886–893.

S.N. Maheswari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89(1975), 395-402.

S. N. Maheswari and R. Prasad, On R0-spaces, Portugal Math., 34(1975), 213-217.

K. Mohana and I. Arockiarani, (1, 2)*-Mmπ-Closed sets In Biminimal Spaces (Communicated).

M. G. Murdeshwar and S. A. Naimpally, R1-topological spaces, Canad. Math. Bull., 9 (1996), 521–523.

S. A. Naimpally, On R0-topological spaces, Ann. Univ. Sci. Budapest. E¨otv¨os Sect. Math. 10 (1976), 53–54.

T. Noiri, 11th meeting on topological spaces and its Applications, Fukuoka University Seminar House, 2006, 1-9.

V. Popa and T. Noiri, On M-continuous functions, Anal. Univ “Dunarea de Jos “ Galati, Ser. Mat. Fiz. Mec. Tecor. (2), 18(23) (2000), 31-41.

O. Ravi, R. G. Balamurugan and M. Balakrishnan, On biminimal quotient mappings, International Journal of Advances in Pure and Applied Mathematics, 1(2) (2011), 96-112.

O. Ravi, R. G. Balamurugan and M. Krishnamoorthy, Decompositions of M (1, 2)* -continuity and Complete M (1, 2)* -continuity In Biminimal Spaces, International Journal of Mathematical Archive, 2(11) (2011), 2299-2307.

N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk SSSR, 38 (1943), 110–113.

C.-T. Yang, “On paracompact spaces,” Proc. Amer. Math. Soc., vol. 5, pp. 185– 189, 1954.

Downloads

Published

2016-01-31

How to Cite

Mohana, K., Arockiarani, & Jafari, S. (2016). Low Separation Axioms Via (1, 2)*-Mmπ-Closed Sets in Biminimal Spaces. International Journal For Research In Mathematics And Statistics, 2(1), 06–18. https://doi.org/10.53555/ms.v2i1.240