Composites Enhanced with Nanocrystalline Cellulose (NCC): A Comparative Study

Authors

  • Sara Al Braiki Department of Mechanical Engineering, United Arab Emirates University, P.O.Box: 15551, Al-Ain city, UAE
  • Sangarappillai Sivaloganathan Department of Mechanical Engineering, United Arab Emirates University, P.O.Box: 15551, Al-Ain City, UAE

DOI:

https://doi.org/10.53555/mce.v4i5.607

Abstract

Palmero [1] defines Nanotechnology as the creation, processing, characterization and utilization of materials, devices and systems with dimensions of the order of 10 – 100 nm, exhibiting novel and significantly enhanced physical, chemical and biological properties, functions, phenomena and processes, due to their nano-scale size. She further differentiates that a nanomaterial has a typical grain size <100 nm, whereas ultrafine-grained materials are characterized by grain size <500 nm. Composites are materials in which the distinct phases are separated on a scale larger than the atomic, and in which properties such as the elastic modulus are significantly altered in comparison with those of a homogeneous material. In this category a “nanocomposite” comprises multiphase materials, where at least one constituent phase has dimension of less than 100 nm. The most important and largely attained organic entity is that of the cellulose which portrays a distinctive variety of nano-sized and micro-sized structures[2]. The pure Cellulose in a crystalline form, with dimensions of the nano size, is termed as Nanocrystalline Cellulose (NCC) which is derived from over a diverse range of natural sources such as cotton, algae, bacteria and wood. This paper summarizes the advances made in NCC technology in terms of its (a) morphology and dimensions (b) its physical and chemical properties (c) surface functionalizing properties (d) applications and (e) the challenges in the use of NCC.

Downloads

Download data is not yet available.

References

[1] Palmero P., Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods, Nanomaterials (Basel), Vol (5 (2) Jun; 5(2) 2015 : 656–696
[2] Habibi, Y., Lucia, L. A., Rojas, O. J. (2010). Cellulose Nanocrystals: Chemistry, Self-assembly and Applications. Chemical Reviews, 110(6), 3479-3500.
[3] Beck-Candanedo, S., Roman, M., Gray, D.G. (2005). Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6, 1048–1054.
[4] Peng, BL., Dhar, N., Liu, H.L., Tam, K.C. (2011). Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng, 9999, 1–16.
[5] Araki, J., Wada, M., Kuga, S. (2001). Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir, 17, 21–27.
[6] De Menezes, AJ., Siqueira, G., Curvelo, A.A., Dufresne, A. (2009). Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer, 50, 4552–4563.
[7] De Rodriguez, NLG., Thielemans, W., Dufresne, A. (2006). Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose, 13, 261–270.
[8] Revol, J.F. (1982). On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym, 2, 123–134.
[9] Kimura, F., Kimura, T., Tamura, M., Hirai, A., Ikuno, M., Horii, F. (2005). Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir, 21, 2034–2037.
[10] George, J., Bawa, A.S., Siddaramaiah. (2010). Synthesis and characterization of bacterial cellulose nanocrystals and their PVA nanocomposites. Adv Mater Res, 123, 383–386.
[11] Brechet, Y., Cavaillé, J.Y., Chabert, E., Chazeau, L., Dendievel, R., Flandin, L., Gauthier, C. (2001). Polymer Based Nanocomposites: Effect of Filler-Filler and Filler-Matrix Interactions. Advanced engineering materials, 3(8), 571-577.
[12] Oksman, K., Mathew, A.P., Bondeson, D., Kvien, I. (2006). Manufacturing process of cellulosewhiskers / polylactic acid nanocomposites. Compos Sci Technol, 66 (15), 2776-2784.
[13] Dufresne, A. (2006). Comparing the mechanical properties of high performances polymers nanocomposites from biological sources. Journal of Nanoscience and Nanotechnology, 3, 322-330.
[14] Bondeson, D., Oksman, K. (2007). Polylactic acid/cellulose whisker nanocomposites Modified by polyvinyl alcohol. Compos Part A Appl Sci Manuf, 38(12), 2486-2492.
[15] Filpponen, E.I. (2009). The synthetic strategies for unique properties in cellulose nanocrystal materials.
[16] Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chem.Soc.Rev., 40(7), 3941-3994.
[17] Mitchell, B.S. (2003). An introduction to materials engineering and science for chemical and materials engineers, Wiley-Interscience.
[18] Hussain, F., Hojjati, M., Okamoto, M., Gorga, R.E. (2006). Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. Journal of Composite Materials, 40(17), 1511-1575.
[19] Lahiji, R.R., Xu, X., Reifenberger, R., Raman, A., Rudie, A., Moon, R.J. (2010). Atomic force microscopy characterization of cellulose nanocrystals. Langmuir, 26(6), 4480-4488.
[20] Rusli, R., Eichhorn, S.J. (2008). Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Applied Physics Letters, 93(3), 033111-033111-3.
[21] Hamad, W. (2006). On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. The Canadian Journal of Chemical Engineering, 84, 513–519.
[22] Cheng, M., Chen, W., Weerasooriya, T. (2004). Experimental investigation of the transverse mechanical properties of a single Kevlar-KM2 fiber. International Journal of Solids and Structures, 41, 6215–6232.
[23] Sakurada, I., Nukushina, Y., Ito, T. (1962). Experimental determination of elastic modulus of crystalline regions in oriented polymers. J Polym Sci, 57(165), 651-660.
[24] Hanley, S.J., Giasson, J., Revol J.F., Gray, D.G. (1992). Atomic force microscopy of cellulose microfibrils: Comparison with transmission electron microscopy. Polymer (Guildf), 33(21), 4639–4642.
[25] George, J., Sabapathi, S.N. (2015). Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnology, Science and Applications, 8, 45–54.
[26] Eyley, S., Thielemans, W. (2014). Surface modification of cellulose nanocrystals. Nanoscale, 6, 7764–7779.
[27] Edmond Lam, Keith B. Male, Jonathan H. Chong, Alfred C.W. Leung, John H.T. Luong (2012). Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology, 30(5), 283-290.
[28] Habibi, Y. (2006). TEMPO-Mediated surface oxidation of cellulose whiskers. Cellulose 13, 679–687.
[29] Hasani, M. (2008). Cationic surface functionalisation of cellulose nanocrystals. Soft Matter, 4, 2238–2244.
[30] Habibi, Y. (2008). Bionanocomposites based on poly(ecaprolactone)- grafted cellulose nanocrystals by ring-opening polymerisation. J. Mater. Chem., 18, 5002–5010.
[31] Gousse, C. (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer, 43, 2645–2651.
[32] Junior de Menezes, A. (2009). Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer, 50, 4552–4563.
[33] Pandey, J.K. (2009). Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass. Composites, Part B, 40, 676–680.
[34] Siqueira, G. (2009). Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules, 10, 425–432.
[35] Leung, C.W. (2010). Cellulose nanocrystal from renewable biomass. National Research Council of Canada, CA 2010/000372.
[36] Leung, A.C.W. (2011). Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small, 7, 302–305
[37] Samir, M. A. S. A., Alloin, F., Dufresne, A. (2005). Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules, 6, 612–626.
[38] Fleming, K., Gray, D. G., Matthews, S. (2001). Cellulose Crystallites. Chem. Eur. J., 7, 1831–1836.
[39] Revol, J.F., Godbout, L.,. Gray, D. G. (1997). Solidified Liquid Crystals of Cellulose with Optically Variable Properties. U.S. Patent No. 5,629,055.
[40] Revol, J.F., Godbout, L.,. Gray, D. G. (1998). Solid Films of Cellulose with Chiral Nematic Order and Optically Variable Properties. PPR 1331.
[41] Samir, M. A. S. A., Alloin, F., Sanchez J., Dufresne, A. (2004). Cross-Linked Nanocomposite Polymer Electrolytes Reinforced With Cellulose Whiskers. Macromolecules, 37, 4839–4844.
[42] Samir, M. A. S. A., Alloin, F., Gorecki, W., Sanchez J., Dufresne, A. (2004). Nanocomposite Polymer Electrolytes Based on Poly(oxyethylene) and Cellulose Nanocrystals, J. Phys. Chem. B 108, 10845–10852.
[43] Samir, M. A. S. A., Mateos, A. M., Alloin, F., Sanchez J., Dufresne, A. (2004). Plasticized Nanocomposite Polymer Electrolytes Based on Poly (oxyethylene) and Cellulose Whiskers. Electrochim. Acta, 49, 4667–4677.
[44] Schroers, M., Kokil, A., Weder, C. (2004).Solid Polymer Electrolytes Based on Nanocomposites of Ethylene Oxide-Epichlorohydrin Copolymers and Cellulose Whiskers. J. Appl. Polym. Sci., 93, 2883–2888.
[45] Dufresne, A. (2008). Polysaccharide nanocrystal reinforced nanocomposites. The Canadian Journal of Chemical Engineering, 86, 484–494.
[46] Dufresne, A. (2010). Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules, 15, 4111–4128.
[47] Duran, N., Lemes, A. P., Seabra, A. B. (2012). Review of cellulose nanocrystals patents: Preparation, composites and general applications. Recent Patents on Nanotechnology, 6, 16–28.
[48] Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J. (2010). Review: Current international research into cellulose nanofibres. Journal of Materials Science, 45, 1–33.
[49] Hubbe, M. A., Rojas, O. J., Lucia, L. A., Sain, M. (2008). Cellulosic nanocomposites: A review. Bioresources, 3, 929–980.
[50] Klemm, D., Heublein, B., Fink, H. P., Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358–3393.
[51] Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 50, 5438–5466.
[52] Oksman, K., Sain, M. (2006). Cellulose nanocomposites: Processing, characterization and properties. Washington, DC: American Chemical Society.
[53] Siquera, G., Bras, J., Dufresne, A. (2010). Cellulosic bionanocomposites: A review of preparation properties and applications. Polymers, 2, 728–765.
[54] Visakh, P. M., Thomas, S. (2010). Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste and Biomass Valorization, 1, 121–134.
[55] Thielemans, W., Warbey, C. R., Walsh, D. A. (2009). Permselective nanostructured membranes based on cellulose nanowwhiskers. Green Chemistry, 11, 531–537.
[56] Jiang, Z. H., Berry, R., Bouchard, J., Audet, A. (2011). Adhesion with nanocrystalline cellulose. US patent 2011/0293932.
[57] Samir, M. A. S. A., Alloin, F., Dufresne, A. (2006). High performance nanocomposite polymer electrolytes. Composite Interfaces, 13, 545–559.
[58] Fleming, K., Gray, D. G., Prasannan, S., & Matthews, S. (2000). Cellulose crystallites: A new and robust liquid crystalline medium for the measurement of residual dipolar couplings. Journal of the American Chemical Society, 122, 5224–5225.
[59] Brinchi, L., Cotana, F., Fortunati, E., Kenny J.M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94, 154-169.
[60] Capadona, J. R., Shanmuganathan, K., Tyler, D. J., Rowan, S. J., Weder, C. (2008). Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science, 319, 1370-1374.

Downloads

Published

2018-05-31

How to Cite

Braiki, S. A., & Sivaloganathan, S. (2018). Composites Enhanced with Nanocrystalline Cellulose (NCC): A Comparative Study. International Journal For Research In Mechanical & Civil Engineering, 4(5), 01–10. https://doi.org/10.53555/mce.v4i5.607