Dispersion and Storage Coefficient Influence on Accumulation of Frankia Transport in Heterogeneous Silty and Fine Sand Formation, Warri, Delta State of Nigeria

Authors

  • Ezeilo F. E. Department of Civil Engineering, Rivers State University of Science and Technology, Port Harcourt
  • Eluozo S. N. Department of Civil Engineering, Gregory University Uturu (GUU), Abia State of Nigeria

DOI:

https://doi.org/10.53555/mce.v4i4.380

Keywords:

Dispersion, storage coefficients frankia, heterogeneous formation

Abstract

The study of frankia transport pressured by dispersion and storage coefficient has been thoroughly expressed. The study has monitored the deposition of frankia in silty and fine sand formation. The developed model has express the behaviour of frankia in the study location, storage coefficient and dispersions were observed to pressure the behaviour of the contaminant as  expressed in graphical representation, the fluctuation of concentration reflect the influences from porosity variation thus dispersion and storage coefficient, this  generated slight accumulation of frankia in silty and fine sand formation, this condition were examined through the rate of its deposition base on  some  fluctuation experienced  that could not monitor the detail deposition of frankia transport in silty and fine sand formation,  slight heterogeneous setting in the formation were also observed, the developed model were compared with other experimental values, and  both parameters expressed favourable fits validating the model.

Downloads

Download data is not yet available.

References

Katherine C. Goldfarb1†, Ulas Karaoz1, China A. Hanson2, Clark A. Santee1, Mark A. Bradford3, KathleenK. Treseder2, Matthew D. Wallenstein4 and Eoin L. Brodie1 2011 Differential growth responses of soilbacterial taxa to carbon substrates of varying chemical recalcitrance frontier microbiology

Artursson, V., Finlay, R. D., and Jansson, J. K. (2005). Combined bromodeoxyuridine immunocapture andterminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterialmetagenome due to glomus mosseae inoculation or plant species.Environ. Microbiol. 7, 1952–1966.

Artursson, V., and Jansson, J. K. (2003). Use of bromodeoxyuridine immunocapture to identify activebacteria associated with arbuscular mycorrhizal hyphae. Appl. Environ. Microbiol. 69, 6208–6215.

Allison, S. D., Czimczik, C. I., and Treseder, K. K. (2008). Microbial activity and soil respiration undernitrogen addition in alaskan boreal forest. Glob. Change Biol. 14, 1156–1168.

Buckley, D. H., Huangyutitham, V., Hsu, S. F., and Nelson, T. A. (2007). Stable isotope probing with 15N2reveals novel noncultivated diazotrophs in soil. Appl. Environ. Microbiol. 73, 3196–3204.

Borneman, J. (1999). Cultureindependent identification of microorganisms that respond to specified stimuli.Appl. Environ. Microbiol.65, 3398–3400

Fierer, N., Bradford, M. A., and Jackson, R. B. (2007a). Toward and ecological classification of soilbacteria. Ecology 88, 1354–1364

Papke, R. T., and Ward, D. M. (2004). The importance of physical isolation to microbial diversification.FEMS Microbiol. Ecol. 48, 293–303.

Zhou, J., Xia, B., Treves, D. S., Wu, L. Y., Marsh, T. L., O’Neill, R. V., Palumbo, A. V., and Tiedje, J. M.(2002). Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 68,326–334.

Waldrop, M. P., and Firestone, M. K. (2004). Microbial community utilization of recalcitrant and simplecarbon compounds: impact of oak-woodland plant communities. Oecologia 138, 275–284.

Wilson, M., and Lindow, S. E. (1994). Coexistence among epiphytic bacterial populations mediatedthrough nutritional resource partitioning. Appl. Environ. Microbiol. 60, 4468–4477

Drenovsky, R. E., Steenwerth, K. L., Jackson, L. E., and Scow, K. M. (2009). Land use and climatic factorsstructure regional patterns in soil microbial communities. Glob. Ecol. Biogeogr. 19, 27–39.

Lauber, C. L., Hamady, M., Knight, R., and Fierer, N. (2009). Pyrosequencingbased assessment of soil pHas a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120.

Chu, H., Fierer, N., Lauber, C. L., Caporaso, J. G., Knight, R., and Grogan, P. (2010). Soil bacterialdiversity in the arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12,2998–3006.

Green, J. L., Bohannan, B. J. M., and Whitaker, R. J. (2008). Microbial biogeography: from taxonomy totraits. Science 320, 1039–1043

Stein, L. Y., and Nicol, G. W. (2011). Grand challenges in terrestrial microbiology. Front. Microbiol. 2:6.doi: 10.3389/ fmicb.2011.00006 Stein, L. Y., and Nicol, G. W. (2011). Grand challenges in terrestrialmicrobiology. Front. Microbiol. 2:6. doi: 10.3389/ fmicb.2011.00006

Radajewski, S., Ineson, P., Parekh, N. R., and Murrell, J. C. (2000). Stableisotope probing as a tool inmicrobial ecology. Nature 403, 646–649.

Griffiths, R. I., Manefield, M., Ostle, N., McNamara, N., O’Donnell, A. G., Bailey, M. J., and Whiteley, A.S. (2004). 13CO2 pulse labelling of plants in tandem with stable isotope robing:methodological considerations for examining microbial function in the rhizosphere. J. Microbiol. Methods 58,119–129.

Feth El Zahar, H., Wafa, A., Richard, C., Thierry, H., Christine, M., Marie-France, M., Christophe, M.,Lionel, R., Jèrùme, B., and Odile, B. (2007). Identification of cellulolytic bacteria in soil by stable isotopeprobing. Environ. Microbiol. 9, 625–634.

Schwartz, E. (2007). Characterization of growing microorganisms in soil by stable isotope probing withH218O. Appl. Environ. Microbiol. 73, 2541–2546.

Urbach, E., Vergin, K. L., and Giovannoni, S. J. (1999). Immunochemical detection and isolation of DNAfrom metabolically active bacteria. Appl. Environ. Microbiol. 65, 1207–1213

Yin, B., Crowley, D., Sparovek, G., De Melo, W. J., and Borneman, J. (2000). Bacterial unctionalredundancy along a soil reclamation gradient. Appl. Environ. Microbiol. 66, 4361–4365

Eluozo. S. N and 2Afiibor B .B (2013) mathematical model to monitor the behaviour of nitrogen on salmonella transport in homogenous fine sand in coastal area of port Harcourt, Niger delta of NigeriaWorld Journal of Science and Technology Research Vol. 1, No. 3, May 2013, PP: 53 -66

Downloads

Published

2018-04-30

How to Cite

F. E., E., & S. N., E. (2018). Dispersion and Storage Coefficient Influence on Accumulation of Frankia Transport in Heterogeneous Silty and Fine Sand Formation, Warri, Delta State of Nigeria. International Journal For Research In Mechanical & Civil Engineering, 4(4), 01–16. https://doi.org/10.53555/mce.v4i4.380