The Utilization of Coconut Wastes for Bioplastic Production

Authors

  • J. Rodolfo Rendón Villalobos Instituto Politécnico Nacional (CEPROBI-IPN). Morelos, P.O. Box: 24, 62731. Mexico

Keywords:

Coconut waste, bioplastic

Abstract

Plastics have been developed as materials with specific characteristics to market demands (durable, economical and light). However, single-use plastic waste is a worldwide event due to its low or no biodegradability. Pollution problems related to the disposal of solid waste associated with these polymers, both in the agricultural sector, companies and society in general, have generated the search for alternatives that help reduce the impact generated by these materials. The objective of this work was to take advantage of the coconut bagasse (Cocos nucifera L.) in obtaining natural polymers that allow the production of bioplastics. The microcellulose was characterized by scanning electron microscopy (SEM) and its thermal capacity and percentage of crystallinity were determined by Differential Scanning Calorimetry (DSC). The microcellulose was dispersed in starch/glycerol to obtain bioplastics as follows: control C or starch/glycerol with no microcellulose addition; A1 or starch/glycerol and microcellulose at 0.05% and A2 or starch/glycerol and microcellulose at 0.1%, respectively. The SEM of cellulose showed the removal of lignocellulosic walls, as well as fibers with diameters 40 and 400 μm. The native fiber presented an endotherm at 116.41°C and the microcellulose at 143.67°C. The bioplastics observed by SEM presented a surface with irregularities, it was grainy, not soft, and at first glance you could see some large particles associated with processing operations. Sample A1 presented the best calorimetric characteristics. Obtaining bioplastics materials from coconut residues will help mitigate the production and excessive use of single-use materials.

Downloads

Download data is not yet available.

References

Avena-Bustillos, R. J., Olsen, C. W., Olson, D. A., Chiou, B., Yee, E. and Bechtel, P. J. (2006). Water vapor permeability of mammalian and fish gelatine films. Journal of Food Science, 71(4), 202-207.
Barba Pacheco, C. (2002). Síntesis de carboximetilcelulosa (CMC) a partir de pastas de plantas anuales (Doctoral dissertation, Ph. D. Thesis, Universitat Rovira i Virgili, Tarragona, Spain).
Biliaderis, C. G. (1991). The structure and interactions of starch with food constituents. Canadian Journal of Physiology and Pharmacology, 69(1),60-78.
Bourtoom, T. and Chinnan, M. S. ( 2008). Preparation and properties of rice starch-chitosan blend biodegradable film. LWT-Food Science and Technology, 41(9), 1633-1641.
Browing, B. L. (1963). The chemistry of wood. Interscience, 5, 574-580.
De Dios Naranjo, C., Alamilla-Beltrán, L., Gutiérrez-López, G. F., Terres-Rojas, E., Solorza-Feria, J., Romero-Vargas, S. and Mora-Escobedo, R. (2016). Aislamiento y caracterización de celulosas obtenidas de fibras de Agave salmiana aplicando dos métodos de extracción ácido-álcali. Revista mexicana de ciencias agrícolas, 7(1), 31-43.
García, M. A., Pinotti, A., Martino, M. N. and Zaritzky, N. E. (2004). Characterization of composite hydrocolloid films. Carbohydrate polymers, 56(3), 339-345.
García-García, L.; Bordallo-López, E.; Dopico-Ramírez, D. and Cordero-Fernández, D. (2013). Obtención de celulosa microcristalina a partir del bagazo de la caña de azúcar. ICIDCA. 47(1), 57-63.
Kaushik, A., Singh, M. and Verma, G. (2010). Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers, 82(2), 337-345.
Klemm, D., Heublein, B., Fink, H. P. and Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie – International Edition, 44(22), 3358–3393.
Lara, U. G., Febrin, E. E., Sidabutar, H. F. Dwi W. W. and Roostita, L. B. (2019). The utilization of fruit and vegetable wastes for bioethanol production with the inoculation of indigenous yeasts consortium. Bulgarian Journal of Agricultural Science, 25(2), 264-270.
Larotonda, F. D. S., Matsui,K. N., Soldi, V. and Laurindo, J. B. (2004). Biodegradable Films Made from Raw and Acetylated Cassava Starch. Brazilian Archives of Biology and Technology, 47(3),477-484.
Li, Q., Zhou, J. and Zhang, L. (2009). Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. Journal of Polymer Science Part B: Polymer Physics, 47(11), 1069-1077.
Lorenzo-Santiago, M.A., Rendón-Villalobos, J.R., García-Hernández E., Juárez López, A.L. and Trujillo-Hernández, C.A. (2016). Obtención y caracterización estructural de celulosa extraída de endocarpio fibroso de mango (Mangifera indica L.). Journal CIM, 4(1), 669-674.
Luchese, C. L., Frick, J. M., Patzer, V. L., Spada, J. C. and Tessaro, I. C. (2015). Synthesis and characterization of biofilms using native and modified pinhão starch. Food Hydrocolloids, 45, 203-210.
Ma, X., Yu, J. and Kennedy, J. F. (2005). Studies on the properties of natural fibers- reinforced thermoplastic starch composites. Carbohydrate Polymers, 62 (1), 19–24.
Mali, S. and Grossmann, M. V. E. (2003). Effects of yam starch films onstorability and quality of fresh strawberries. Journal of Agricultural and Food Chemistry, 51(24),7005-7011.
Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N. and Zaritzky, N. E. (2002) Microstructural characterization of yam starch films. Carbohydrate Polymers, 50(4), 379-386.
Morales, A., Victoria, D., Ponce, M., and Lozano, T. (2001). Materiales reforzados de poliolefinas recicladas y nanofibras de celulosa de henequén. Revista Iberoamericana de Polímeros, 120(5), 255-267.
Morán, J. and Álvarez, V. (2008). Extracción de celulosa y obtención de nanocelulosa a partir de fibra sisal. Asociación Argentina de Materiales, 15(1), 149-159.
Myers, A. M., Morell, M. K., James, M. G. and Ball, S. G. (2000) Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiology, 122(4), 989-997.
Poley, L.H., Siqueria, A. P. L., da Silva, M. G. and Vargas, H. (2004). Photothermal characterization of low density polyethylene food packages. Polímeros: Ciência e Tecnologia, 14(1), 8-12.
Quintanar-Guzmán A., Jaramillo-Flores M. A., Mora Escobedo R., Chel-Guerrero L. and Solorza-Feria J. (2009). Changes on the structure, consistency, physicochemical and viscoelastic properties of corn (Zea mays sp.) under different nixtamalization conditions. Carbohydrate Polymers, 78(4), 908-916.
Rendón-Villalobos, R., García-Hernández, E., Güizado-Rodríguez, M., Salgado-Delgado, R. and Rangel-Vázquez, N. A. (2010). Obtención y caracterización de almidón de plátano (Musa paradisiaca L.) acetilado a diferentes grados de sustitución. AFINIDAD, 67(547), 294-300.
Reza, H. T., Abdollah, E., Kazem, D. and Reza, H. (2017). Correlation between gas and liquid permeability with noise reduction coefficient in insulation boards made from sugar cane bagasse. Bulgarian Journal of Agricultural Science, 23(4), 674-681.
SAGARPA-SIAP. (2019). Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Centro de Información Agropecuaria y Pesquera Estadísticas de la producción agrícola en México, México. D.F. http://infosiap.siap.gob.mx: 8080/agricola_siap_gob.mx.
Salgado-Delgado, R., Coria-Cortés, L., García-Hernández, E., Vargas-Galarza, Z., Rubio-Rosas, E. and Crispín-Espino, I. (2010). Elaboración de materiales reforzados con carácter biodegradable a partir de polietileno de baja densidad y bagazo de caña modificado. Revista Iberoamericana de Polímeros, 11(7), 520-531.
Samir M., Alloin F., Paillet M. and Dufresne A. (2004). Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules, 37(11), 4313-4316.
Spagnol, C., Rodrigues, F. H. A., Pereira, A. G. B., Fajardo, A. R., Rubira, A. F. and Muniz, E. C. (2012). Superabsorbent hidrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydrate Polymers, 87(3), 2038-2045.
Vanin, F. M., Sobral, P. J. A., Menegalli, F. C., Carvalho, R. A. and Habitante, A. M. Q. B. (2005). Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocolloids, 19(5), 899-907.
Xiao, B., Sun, X. and Sun, R. (2001). Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer degradation and stability, 74(2), 307-319.

Downloads

Published

2020-05-31

How to Cite

Villalobos, J. R. R. . (2020). The Utilization of Coconut Wastes for Bioplastic Production. International Journal For Research In Agricultural And Food Science, 6(5), 20–29. Retrieved from https://gnpublication.org/index.php/afs/article/view/1316