

$\delta(\delta g)$ * - Sets and Functions in Topological Spaces

Meriam N. Bitasolo

College of Teacher Education, Bohol Island State University-Calape Campus, 6323 San Isidro, Calape, Bohol Philippines

ABSTRACT

This study introduced the notion of $\delta(\delta g) *$ - set and functions in topological spaces (briefly TS). This proves that in TS, the δ -closure of a set is smaller than its $\delta(\delta g) *$ - closure while the δ -interior is generally larger than its $\delta(\delta g) *$ - interior. In addition, in the same space the $\delta(\delta g) *$ - continuous functions, absolute- $\delta(\delta g) *$ - continuous functions and rs - $\delta(\delta g) *$ - continuous functions are introduced and investigated. Characterization and properties of these functions are also determined.

Keywords: $\delta(\delta g) * - set$, $\delta(\delta g) * - closure$, $\delta(\delta g) * - continuous functions, absolute-<math>\delta(\delta g) * - continuous functions, rs - \delta(\delta g) * - continuous functions$

1. INTRODUCTION

Over the years, several types of closed and open sets have been introduced in an arbitrary topological space. In 1968, Velicko [24] introduced sets that are stronger than open sets called δ -open sets. On the other hand in 1970, Norman Levine [11] introduced and investigated the concepts of generalized closed (briefly, g-closed) sets. By combining the notions of δ -closedness and g-closedness, Julian Dontchev [3] proposed a class of generalized closed sets called δg -closed set in 1996. Later, Thivagar et.al [25] introduced a class that lies between the class of δ -closed sets and δg -closed sets called $\delta \hat{g}$ -closed sets in 2010.

In 2012, the two authors Sudha R. and Sivakamasundari, K. [19] introduced and investigated another generalized closed set namely $\delta g *$ - closed set. Also, in 2014 K. Meena and K. Sivakamasundari [14] introduced a new class of generalized closed sets called $\delta(\delta g) *$ - closed set in topological spaces.

Along these concepts the author is highly motivated to introduce and investigate some properties of the notion of $\delta(\delta g) *$ -closed set in topological spaces. This paper presents several characterization, properties and examples related to the new concepts.

2. $\delta(\delta g)$ *-Sets and Functions In Topological Spaces

This section introduces the concepts of $\delta(\delta g)^*$ - closure, $\delta(\delta g)$ *-interior of a set, $\delta(\delta g)$ * -continuous, absolute- $\delta(\delta g)$ * -continuous, and regular strongly- $\delta(\delta g)$ * -continuous functions in TS. All throughout, (X, τ), (Y, τ), (Z, τ) are TS. Some basic properties, relationships and characterizations involving these sets are considered.

2.1 $\delta(\delta g)$ * - Closure and $\delta(\delta g)$ * - Interior of a Set

Definition 2.1 Let (X, τ) be a TS. Then,

- (i) $\delta(\delta g) * -closure$ of A denoted by $\delta(\delta g) * cl(A)$ is the intersection of all $\delta(\delta g)^*$ closed sets in X containing A.
- (ii) $\delta(\delta g) * -interior$ of A denoted by $\delta(\delta g) * int(A)$ is the union of all $\delta(\delta g) * -open$ sets in X contained in A.

Remark 2.2 Let (X, τ) be a topological space. For any $A \subseteq X$, $A \subseteq \delta(\delta g)^*$ - cl(A) and $\delta(\delta g)^*$ - int $(A) \subseteq A$.

Example 2.3 Let X = {a, b, c} and $\tau = {\phi, X, \{a, c\}, \{b\}}$. Then, the $\delta(\delta g) *$ -closed sets in X are ϕ , X, {b} and {a, c} and the $\delta(\delta g) *$ -open sets are ϕ , X, {a, c} and {b}. Thus, the $\delta(\delta g) *$ - cl({a}) = {a, c} and $\delta(\delta g) *$ - int({a}) = ϕ .

Remark 2.4 The union of two $\delta(\delta g)^*$ -open sets in X is not generally a $\delta(\delta g)^*$ - open set in X.

This section also presents some results about $\delta(\delta g) *$ - closure and $\delta(\delta g) *$ - interior of A. First, consider the following result.

Theorem 2.5 Let A and B be nonempty subsets of X. If $A \neq \phi$, then $a \in \delta(\delta g) * - cl(A)$ if and only if for every $\delta(\delta g) * - open$ set U with $a \in U, U \cap A \neq \phi$.

Proof: Let a $\epsilon \ \delta(\delta g) * - cl(A)$ and let U be $\delta(\delta g) * - open$ set with a ϵ U. Suppose that U $\cap A = \phi$. Then $A \subseteq U^c$ where U^c is $\delta(\delta g) * -closed$. Since a $\notin U^c$, a $\notin \delta(\delta g) * -cl(A)$. Thus we have a contradiction. Hence, $U \cap A \neq \phi$.

Conversely, assume that for every $\delta(\delta g) * -open set U$ with $a \in U, U \cap A \neq \phi$. Suppose that $a \notin \delta(\delta g) * -cl(A)$. Then there exists a $\delta(\delta g) * -closed set F$ with $A \subseteq F$ and $a \notin F$. Thus $F^c \cap A = \phi$ and $a \notin F^c$. Since F^c is $\delta(\delta g) * -open$, a contradiction to the assumption is obtained. Therefore, $a \notin \delta(\delta g) * cl(A)$.

Theorem 2.6 Let (X, τ) be a topological space and A, B and F, be subsets of X.

- (i) If A is $\tau \delta(\delta g) * -closed$, then $A = \delta(\delta g) * -cl(A) = \delta(\delta g) * -cl(\delta(\delta g) * -cl(A))$.
- (*ii*) If $A \subseteq B$, then $\delta(\delta g) * -cl(A) \subseteq \delta(\delta g) * -cl(B)$.
- (*iii*) $\delta(\delta g) * -cl(A) \subseteq \delta(\delta g) * -cl(\delta(\delta g) * -cl(A)).$
- $(iv) \quad \delta(\delta g) * -cl(A) \cup \delta(\delta g) * -cl(B) \subseteq \delta(\delta g) * -cl(A \cup B).$

Proof:

- (i) By Remark 2.2, $A \subseteq \delta(\delta g) * -cl(A)$. Since A is $\tau \delta(\delta g) * -closed$, by Definition 2.1(i), $\delta(\delta g) * -cl(A) \subseteq A$. Hence, $A = \delta(\delta g) * -cl(A)$. Consequently, $\delta(\delta g) * -cl(A) = \delta(\delta g) * -cl(\delta(\delta g) * -cl(A))$.
- (ii) Let $x \in \delta(\delta g) * -cl(A)$ and let U be $\delta(\delta g) * -$ open set with $x \in U$. By Theorem 2.5, U $\cap A \neq \phi$. Since $A \subseteq B$, it follows that $U \cap B \neq \phi$. Therefore, $x \in \delta(\delta g) * cl (B)$ implying that $\delta(\delta g) * -cl(A) \subseteq \delta(\delta g) * -cl(B)$.
- (iii) Let $x \in \delta(\delta g) * -cl(A)$ and F be any $\delta(\delta g) * -closed$ set such that $\delta(\delta g) * -cl(A) \subseteq F$. Thus $x \in F$. By Definition 2.1 (i), $x \in \delta(\delta g) * -cl(\delta(\delta g) * cl(A))$.
- (iv) Since A and B are contained in $A \cup B$ by (ii), it follows that $\delta(\delta g) * -cl(A) \subseteq \delta(\delta g) * -cl(A \cup B)$ and $\delta(\delta g) * -cl(B) \subseteq \delta(\delta g) * -cl(A \cup B)$. Therefore, $\delta(\delta g) * -cl(A) \cup \delta(\delta g) * -cl(B) \subseteq \delta(\delta g) * -cl(A \cup B)$.

Theorem 2.5 Let (X, τ) be a topological space and A, B and F, be subsets of X.

- (i) If A is $\delta(\delta g) * -open$, then $A = \delta(\delta g) * -int(A) = \delta(\delta g) * -int(\delta(\delta g) * -int(A))$.
- (*ii*) $x \in \delta(\delta g) * -int(A)$ if and only if there exists a $\delta(\delta g) * -open$ set U with $x \in U \subseteq A$.

(iii) If
$$A \subseteq B$$
, then $\delta(\delta g) * -int(A) \subseteq \delta(\delta g) * -int(B)$.

Proof:

- (i) Let A be a δ(δg) * -open subset of x. Since δ(δg) * -int(A) ⊆ A, it suffices to show that A⊆ δ(δg) * -int(A). Suppose x ∉ δ(δg) * -int(A). Then by Definition 2.1 (ii), x ∉ 0 for any δ(δg) * -open set 0 ⊆ A. Hence, in particular x ∈ A since A is δ(δg) * -open. Thus, A ⊆ δ(δg) * -int(A). Therefore, A= δ(δg) * -int(A). It follows that δ(δg) * -int(A) = δ(δg) * -int (δ(δg) * -int(A)).
- Let x ∈ δ(δg) * −int(A). Then by Definition of interior, x ∈ U for some U-δ(δg) * −open set U with U ⊆ A.
 The converse follows the definition 2.1(ii).
- (iii) Let $A \subseteq B$. Suppose $x \in \delta(\delta g) * -int(A)$. By (ii), there exists a $\delta(\delta g) * -open$ set U with $x \in U \subseteq A$. Since $A \subseteq B$, there exists a $\delta(\delta g) * -open$ set U with $x \in U \subseteq B$. Thus, $x \in \delta(\delta g) * -int(B)$. Therefore, $\delta(\delta g) * -int(A) \subseteq \delta(\delta g) * -int(B)$.

Theorem 2.6 Let $A \subseteq X$. Then $\delta(\delta g) * -int(A) = x \setminus [\delta(\delta g) * -cl(x \setminus A)]$.

Proof: Suppose $x \in \delta(\delta g) * -int(A)$. Then there exists a $\delta(\delta g) * -open$ set U with $x \in U \subseteq A$. Hence, there exist a $\delta(\delta g) * -closed$ set X\U with $x \in X \setminus U \supseteq X \setminus A$. This implies that $x \notin \delta(\delta g) * -cl(X \setminus A)$. Hence, $x \in X \setminus \delta(\delta g) * -cl(X \setminus A)$. Thus, $\delta(\delta g) * -int(A) \subseteq X \setminus [\delta(\delta g) * -cl(X \setminus A)]$.

Conversely, let $x \in X \setminus \delta(\delta g) * -cl(X \setminus A)$. Then $x \notin \delta(\delta g) * -cl(X \setminus A)$. This implies that there exists a $\delta(\delta g) * -c$ losed set F containing X \ A such that $x \notin F$. Hence, there exists a $\delta(\delta g) * -open$ set X \ F with $x \in X \setminus F \subseteq A$. It follows that $x \in \delta(\delta g) * -int(A)$. Therefore, $\delta(\delta g) * -int(A) \supseteq X \setminus [\delta(\delta g) * -cl(X \setminus A)]$ and so, equality follows.

The next Corollary follows immediately from Theorem 2.6.

Corollary 2.7 Let $A \subseteq X$. Then $\delta(\delta g) * -cl(A) = X \setminus [\delta(\delta g) * -int(X \setminus A)]$.

3. $\delta(\delta g) * -Continuous$ Functions

This section gives some properties of $\delta(\delta g) * -$ continous functions.

Definition 3.1 Let (X, τ_X) and (Y, τ_Y) be spaces. A function f: $X \to Y$ is said to be $\delta(\delta g) * -continuous$, if the inverse image of each open set in Y is $\delta(\delta g) * -open$ in X.

Example 3.2 Let X= {a, b, c} and Y={u, v}. Consider the topologies $\tau_X = \{\phi, X, \{b\}, \{a, c\}\}$, and $\tau_Y = \{\phi, Y, \{u\}\}$. Then $\delta(\delta g) * -closed$ sets are $\phi, X, \{b\}$, and $\{a, c\}$ and $\delta(\delta g) * -open$ sets in X are $\phi, X, \{b\}$, and $\{a, c\}$.

Let f: $(X, \tau_X) \to (Y, \tau_Y)$ be defined by $f(a) = f(c) = \{u\}$ and $f(b) = \{u\}$. Then f is τ - $\delta(\delta g)$ *-continuous in X since $f^1(\phi) = \phi$, $f^1(Y) = X$ and $f^1(\{u\}) = \{a, c\}$ where ϕ, X and $\{a, c\}$ are $\delta(\delta g) * -open$ sets in X.

Therefore, f: $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is a $\delta(\delta g) * -continuous function.$ **Theorem 3.3** *If f:* $X \rightarrow Y$ *is* $\delta(\delta g) * -continuous and g: Y \rightarrow Z$ *is continuous, then g of* : $X \rightarrow Z$ *is* $\delta(\delta g) * -continuous.$

Proof: Let U be open in Z. Then by continuity of g, $g^{-1}(U)$ is open in Y. Since f is $\delta(\delta g) * -continuous$, $f^{1}(g^{-1}(U)) = (g \ o \ f)^{-1}(U)$ is $\delta(\delta g) * -open$ in X. Therefore, g o f is $\delta(\delta g) * -continuous$.

Remark 3.4 The composition of two $\delta(\delta g) * -$ continous functions need not be $\delta(\delta g) * -$ continous.

To see this, let $X = \{a, b, c\}$, $Y = Z = \{u, v, w\}$ with their respective topologies $\tau_X = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, and $\tau_Y = \{\phi, Y, \{u\}\}$, and $\tau_Z = \{\phi, Z, \{u, w\}\}$.

Theorem 3.5 A function $f: X \to Y$ is $\delta(\delta g) * -$ continous if and only if the inverse image of each closed set in Y is $\delta(\delta g) * -$ closed in X.

Proof: Let F be any closed set in Y. Then F^c is open in Y. Since f is $\delta(\delta g) * -continous$, $f^1(F^c)$ is $\delta(\delta g) * -open$ in X. Now, by the existing theorem $f^1(Y \setminus F) = f^1(Y) \setminus f^1(F)$. Hence, $f^1(F)$ is $\delta(\delta g) * -closed$ in X.

Let U open in Y. Then U^c is closed in Y. By Assumption, $f^1(U^c)$ is $\delta(\delta g) * -\text{closed in } X$. By this theorem $f^1(Y | U) = f^1(Y) | f^1(U)$. Hence, $f^1(U)$ is $\delta(\delta g) * -\text{open}$. Therefore, f is $\delta(\delta g) * -\text{continous}$.

Theorem 3.6 If $f: X \to Y$ is $\delta(\delta g) * -continous$, then $f(\delta(\delta g) * -cl(A) \subseteq cl(f(A))$ for every $A \subseteq X$.

Proof: Let $A \subseteq X$ and let $x \in \delta(\delta g) * -cl(A)$. Suppose that O is an open set in Y with $f(x) \in O$. Since f is $\delta(\delta g) * -continuous$, $f^{-1}(O)$ is $\delta(\delta g) * -open$ in X where $x \in f^{-1}(O)$. Hence, by Theorem 2.5, $f^{-1}(O) \cap A \neq \phi$. It follows that $\phi \neq f(f^{-1}(O)) \cap A \subseteq f(f^{-1}(O)) \cap f(A) \subseteq O \cap f(A)$. Thus, $O \cap f(A) \neq \phi$. Therefore, by Theorem 2.5, $f(x) \in cl - f(A)$.

Theorem 3.7 If $f: X \to Y$ is $\delta(\delta g) * -continous$, then $(\delta(\delta g) * -cl(f^{-1}(B) \subseteq f^{-1}(cl(B)))$ for every $B \subseteq Y$.

Proof: Let f: X→ Y is $\delta(\delta g) * -continous$, and B ⊆ Y. By Theorem 3.6, $f(\delta(\delta g) * -cl(f^{-1}(B)) \subseteq cl(f(f^{-1}(B)) \subseteq cl(B))$. Therefore, $\delta(\delta g) * -(cl(f^{-1}(B)) \subseteq (f^{-1}cl(B)))$.

Remark 3.8: The converse of Theorem 3.6 and 3.7 are not true.

Theorem 3.9 If $f: X \to Y$ is $\delta(\delta g) * -$ continous function, then for every $x \in X$ and every open set V in Y containing f(x), then there exists a $\delta(\delta g) * -$ open set O in X such that $x \in O$ and $f(O) \subseteq V$.

Proof: Let $x \in X$ and V be an open set in Y containing f(x). Since f is $\delta(\delta g) * -$ continuous, $f^{-1}(V)$ is $\delta(\delta g) * -$ open in X. Let $O = f^{-1}(V)$. Thus, $x \in O$ and by theorem $f(O) = f(f^{-1}(V)) \subseteq V$.

Remark 3.8: *The converse of Theorem 3.9 is not true.*

4. Regular Strongly- $\delta(\delta g) * -Continous$ Functions

Definition 4.1 Let (X, τ_X) and (Y, τ_Y) be spaces. A function f: $X \rightarrow Y$ is said to be *regular strongly* $-\delta(\delta g) *$ -continous, if the inverse image of each $\delta(\delta g) *$ -open set in Y is open in X.

Example 4.2 Let $X = \{a, b, c\}$ and $Y = \{u, v, w\}$. Consider the topologies $\tau_X = \{\phi, X, \{a\}, \{b, c\}\}$, and $\tau_Y = \{\phi, Y, \{u, v\}, \{u, w\}\}$. Then, $\delta(\delta g) * -open$ sets in Y are $\phi, Y, \{v\}$, and $\{u, w\}$.

Let f: $(X, \tau_X) \rightarrow (Y, \tau_Y)$ be defined by f(a) = v, f(b) = u and f(c) = w Then f is rs- $\delta(\delta g)$ *-continuous in X since $f^1(\phi) = \phi, f^1(Y) = X$ and $f^1(\{u, w\}) = \{b, c\}$ and $f = 1(\{v\}) = \{a\}$ where $\phi, X, \{b, c\}$ and $\{a\}$ are open sets in X.

Therefore, f: $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is a $rs - \delta(\delta g) * -continous function$.

Theorem 4.3 A function $f: X \to Y$ is an $rs - \delta(\delta g) * -continous$ if and only if $f^{-1}(F)$ is closed for every $\delta(\delta g) * -closed$ set F in Y.

Proof: Let F be $\delta(\delta g) * -closed$ set in Y. Then Y\F is $\delta(\delta g) * -open$ in Y. Since f is $rs - \delta(\delta g) * -continuous$, $f^{-1}(Y \setminus F)$ is open in X. However, by $f^{1}(Y \setminus F) = f^{1}(Y) \setminus f^{1}(F)$. Hence, $f^{1}(Y)$ is closed.

Let O be $\delta(\delta g) * -open$ set in Y. Then Y\O is $\delta(\delta g) * -closed$ in Y. By assumption, $f^{I}(Y \setminus O)$ is closed. By $f^{I}(Y \setminus O) = f^{I}(Y) \setminus f^{I}(O)$ is closed. Therefore, $f^{I}(O)$ is open in X implying that f is rs- $\delta(\delta g) * -continuous$.

Theorem 4.3 If $f: X \to Y$ is an $rs \cdot \delta(\delta g) * -continous$ function, then for every $x \in X$ and for every $\delta(\delta g) * -open$ set V in Y containing f(x), there exists an open set O in X such that $x \in O$ and $f(O) \subseteq V$.

Proof: Let $x \in X$ and V be a $\delta(\delta g) * -open$ set containing f(x). Since f is $rs \cdot \delta(\delta g) * -continuous$, $f^{1}(V)$ is open. Let $O = f^{1}(V)$. Thus, $x \in O$ and by $f(O) = f(f^{1}(V)) \subseteq (V)$.

5. Absolute- $\delta(\delta g) * -Continous$ Functions

Definition 5.1 Let (X, τ_X) and (Y, τ_Y) be spaces. A function *f*: $X \rightarrow Y$ is said to be *absolute* $-\delta(\delta g) * -continuous$, if the inverse image of each open set in Y is $\delta(\delta g) * -open$ in Y is open in X.

Example 5.2 Let X= {a, b, c} and Y={u, v, w}. Consider the topologies $\tau_X=\{\phi, X, \{a\}, \{b, c\}\}$, and $\tau_Y=\{\phi, Y, \{u, v\}, \{u, w\}\}$. Then, $\delta(\delta g) * -open$ set in Y are $\phi, Y, \{v\}$, and $\{u, w\}$. Also, $\tau_X=\{\phi, X, \{a, b\}, \{a, c\}\}$ and $\tau_Y=\{\phi, Y, \{u\}\}$. Then, the $\delta(\delta g) * -open$ set in X are $\phi, X, \{b\}, \{a, c\}$.

Let $f: (X, \tau_X) \to (Y, \tau_Y)$ be defined by f(a)=u, f(b)=v and f(c)=w. Then f is absolute- $\delta(\delta g) *-continuous$ in X since $f^1(\phi)=\phi$, $f^1(Y)=X$ and $f^1(\{u,w\})=\{a,c\}$ and $f^1(\{v\})=\{b\}$ where $\phi, X, \{a,c\}$ and $\{b\}$ are $\delta(\delta g) *-copen$ in X.

Theorem 5.3 A function $f: X \to Y$ is an absolute- $\delta(\delta g) *$ -continuous function if and only if $f^{1}(B)$ is $\delta(\delta g) *$ -closed for every $\delta(\delta g) *$ -closed set B in Y.

Proof: Let f be absolute- $\delta(\delta g) *$ -continuous function and be a $\delta(\delta g) *$ -closed set in Y. Then Y\B is $\delta(\delta g) *$ -open in Y. By Definition 5.1, by $f^{I}(Y \setminus B)$ is $\delta(\delta g) *$ -open in X. By $f^{I}(Y \setminus B) = f^{I}(Y) \setminus f^{-1}(B)$ is $\delta(\delta g) *$ -open in X. Hence, $f^{I}(B)$ is $\delta(\delta g) *$ - closed in X.

Let *O* be $\delta(\delta g) * -open$ set in Y. Then $Y \setminus O$ is $\delta(\delta g) * -closed$ in Y. By, $[X \setminus f^{1}(O)] = f^{1}(Y) \setminus f^{1}(O)$. Thus, $[X \setminus f^{1}(O)]$ is $\delta(\delta g) * -closed$ in X implying that $f^{1}(O)$ is $\delta(\delta g) * -open$ in X. Therefore, *f* is *absolute*- $\delta(\delta g) * -continuous$.

Theorem 5.4 If $f: X \to Y$ be an absolute $\delta(\delta g) * -$ continuous function. The following hold:

- (i) $f(\delta(\delta g) *) cl(A) \subseteq \delta(\delta g) * -cl(f(A))$ for every $A \subseteq X$.
- (ii) $\delta(\delta g) * -cl(f^{-1}(B)) \subseteq f^{-1}(\delta(\delta g) *) cl(B)$ for every $B \subseteq Y$.

Proof: (a) Let $A \subseteq X$ and let $f(x) \in f(\delta(\delta g) *) - cl(A)$. Suppose that 0 is a $\delta(\delta g) * -open$ set in Y with $f(x) \in 0$. Since f is absolute- $\delta(\delta g) * -continuous$, f(O) is $\delta(\delta g) * -open$ in Y with $x \in f^{-1}(O)$. By Theorem, $f^{-1}(O) \cap A \neq \phi$ since $x \in \delta(\delta g) * -cl(A)$. It follows that, $\phi \neq f(f^{-1}(O)) \cap A f(f^{-1}(O)) \cap f(A) \subseteq O \cap f(A)$. Thus, $O \cap f(A) \neq \phi$. Therefore, by Theorem $f(x) \in \delta(\delta g) * - (cl(f(A)))$.

(b) Let
$$B \subseteq Y$$
 and $A = f^{-1}(B)$. By (a),
 $f(\delta(\delta g) *) - cl(A) = f(\delta(\delta g) *) - cl(f^{-1}(B))$
 $\subseteq \delta(\delta g) * -cl(f(f^{-1}(B)))$
 $\subseteq \delta(\delta g) * -cl(B).$

Hence, $(\delta(\delta g) *) - cl(A) \subseteq f^{-1}(f(\delta(\delta g) *) - cl(B) \subseteq f^{-1}(\delta(\delta g) *) - cl(B)$. Therefore, $(\delta(\delta g) *) - cl(f^{-1}(B)) \subseteq f^{-1}(f(\delta(\delta g) *) - cl(B).$

Theorem 5.5 If $f: X \to Y$ is an absolute $\delta(\delta g) *$ -continuous function, then for every $x \in X$ and for every $\delta(\delta g) *$ -open set V in Y containing f(x), there exists a $\delta(\delta g) *$ -open set O in X such that $x \in O$ and $f(O) \subseteq V$.

Proof: Let $x \in X$ and V be a $\delta(\delta g) * -open$ set containing f(x). Since f is absolute- $\delta(\delta g) * -continuous$, $f^{-1}(V)$ is $\delta(\delta g) * -open$. Let $O = f^{-1}(V)$. Thus, $x \in O$ and by Theorem, $f(O) = f(f^1(V)) \subseteq V$.

Theorem 5.6 If $f: X \to Y$ and $g: Y \to Z$ are absolute- $\delta(\delta g) *$ -continuous functions, then g of $f: X \to Z$ is absolute $\delta(\delta g) *$ -continuous. Proof: Let O be a $\delta(\delta g) *$ -open set in Z. Since g is absolute- $\delta(\delta g) *$ -continuous, $g^{-1}(O)$

Proof: Let O be a $\delta(\delta g) * -open$ set in Z. Since g is absolute- $\delta(\delta g) * -continuous$, $g^{-1}(O)$ is $\delta(\delta g) * -open$ in X since f is absolute- $\delta(\delta g) - continuous$. Thus, $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O))$ is $\delta(\delta g) * -open$ in X. Therefore, by Theorem 5.6, $g \circ f$ is absolute- $\delta(\delta g) * -continuous$.

REFERENCES

- [1] Baculta, J.J., Regular Generalized Star β sets in Generalized, Bigeneralized and Generalized Fuzzy Topological Spaces Ph. D. Thesis. MSU-Iligan Institute of Technology, Iligan City. (2015)
- [2] Dontchev, J. I. Arokiarani, I. and Balanchandran, K., On Generalised δ-Closed Sets and Almost Weakly Hausdorff Spaces., Topology Atlas, (1997).
- [3] Dontchev, J. and Ganster. M., On δ Generalised Closed Sets and T ³/₄ Spaces, Mem. Fac. Sci. Kochi. Univ. Math. 17 (1996), 5-31.
- [4] Dontchev, J. and Noiri, T., *Quasi-normal Spaces and* πg *Closed Sets*. Acta Math. Hungar 89 (3)(2000):211-219.
- [5]Dugunji, J., Topology. New Delhi Prentice Hall of India Private Ltd., (1975).
- [6] Elvina, M.L., (gs)*-*Closed Sets in Topological Spaces*. International Journal of Mathematics Trends and Technology, (7)(2014), 83-93.
- [7]Gnanambal, Y., *On Generalized Pre-regular Sets in Topological Spaces.*, Ind. J.Pure.Appl.Math 28(3)(1997):351-360.
- [8] Jafari, S., Noiri, T., Rajesh, N. and Thivagar, M.L., Another Generalisation of Closed Sets., Kochi.J. Math(3)(2008), 25-38.
- [9] Janaki, C., *Studies on g-closed Sets in Topological.*, Ph. D. Thesis Bharathiar University Coimbatore, India (1999).
- [10] Levine, N., Semi-open Sets and Semi-continuity in Topological spaces., Amer. Math. Monthly., 70(1963), 36-41.
- [11] Levine, N. Generalized Closed sets in Topology., Rend. Circ. Math. Palermo, 19(1970), 89-96.

- [12] Maki, H., Devi, R. and Balanchandran, K., Associated Topologies of generalized-closed Sets and α closed sets and α generalized closed sets., Mem. Fac. Sci. Kochi Univ. (Math)15(1994), 51-63.
- [13] Maki, H., Umehara, J. and Noiri, T., *Every Topological Space is Pre-T1/2.*, Mem.Fac.Sci. Kochi Univ Ser. Alath 17(1996), 33-42.
- [14] Meena, K. and Sivakamasundari, K., $\delta(\delta g) * -Closed Set in Topological Spaces.$ Vol.3(7)(2014), 14749-14753.
- [15] Palaniappan, N. and Rao K.C., *Regular Generalized Closed Sets.*, Kyungpook Math. J 33(1993), 211-219.
- [16] Pushpalatha, A. and Anitha, K., *Definition Bank in General Topology and the Properties* g*s-Closed Sets in Topological Spaces, Int.J. Contemp.Math Sciences, (6)(2011), 917-929.
- [17] Sarsak, M.S. and Rajesh, N., Generalized Semi-pre-Closed Sets. International Mathematical Forum., 5(12)(2010):573-578.
- [18] Shylac I.M.T., and Thangavelu, P., On Regular Pre-semi Closed Sets in Topological Spaces., KBM journal of Mathematical Sciences and Computer Applications, (2010)1(1), 9-17.
- [19] Sudha, R. and Sivakamasundari, K., $\delta g * -Closed Sets$ in Topological Spaces., International Journal of Mathematical Archive, (2012)3(3), 1222-1230.
- [20] Thivagar, M.L., Meeradevi, B. and Hatir, E., $\delta \hat{g}$ -Closed Sets in Topological Spaces., Gen Math.Notes, (2)(2010), 17-25.
- [21] Thivagar, M.L., Meeradevi, B. and Hatir, E., δ Closed Sets and δg Closed Sets called $\delta \hat{g}$ -Closed Sets ., Gen Math.Notes, Vol.1, No.2, (2010), 17-25.
- [22] Vadivel, A. and Vairamanickam, K., *rgα Closed Sets and rgα Open Sets in Topological Spaces.*, Int.J.Math Analysis (2010) 3(37);1803-1819.
- [23] Veerakumar, M.K.R.S., \hat{g} Closed Sets in Topological Spaces., Bull. Allah.Math.soc., (18)(2003), 99-112.
- [24] Velicko, N.V., *H Closed Topological Spaces*, Amer., Math Soc. Transl., 78(1968), 103-118.