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Abstract 

 The growing population has led to increase in waiting time and overcrowding in the 

hospital service, a Poisson regression model has been developed to analyze the time series of 

count data. In finding a Poisson regression model, parameters are estimated and goodness-

of-fit is utilized to carefully extract the best model to fit the count data. The marginal effect is 

the basis function which can be used in the Poisson regression model. This study attempted to 

analyze actual operations of a hospital and proposed modifications in the system to reduce 

waiting times for the patients, which should lead to an improved view of the quality of service 

provided. To develop a Poisson regression analysis model for the above situation, we need to 

define a model for the expected number of patients for hospital services cases. Here, two 

underlying variables are of interest, “waiting time” and “hospital services”. Since “waiting 

time” have been categorized seven groups. The variable “hospital services” which contains 

four categorizes (No welfare (NW), Reimbursement to employer (RE), Social Security Service 

(SS) and 30 baht for welfare health service (Gold cards (30W)). As a result, significant levels 

of causal variables are not expected to be identical for each model. We find that 30 baht for 

welfare health service (Gold cards (30W)) category has a higher rate of increase in the 

average waiting time. The marginal effect is a basis function that can be used in the Poisson 

regression. It allows into arrive at better predictions of hospital service and rehabilitation 

decision making. 

Keywords: Poisson regression model, Risk Rate model, Log-linear model, Queueing model,  

                    Hospital service 

 

1 Introduction 

In the categorical data analysis literatures (Heien, 2004), the survival models and/or 

the Poisson regression models are treated differently than standard logit models. In general, 

these models are termed as Rate Models or Risk Rate Models. In its simplest form, a rate is 

defined as the number of individuals or observations possessing a particular characteristic 

divided by the total amount of exposure to the risk of having such a characteristic. The 

Poisson regression Models can easily be connected to the standard Poisson Models (Daniel 

and Xie, 2000). Then the Poisson Models are directly related to the Exponential Models by 

making conversion of rates per unit interval with the waiting time until the first occurrence. 

Here we use a Poisson regression Model to determine the likelihood of the demand for 

hospital services in a queueing system is to identify factors associated with increased health 

care utilization; particularly those factors related to hospital services. This is a difficult task 

for several reasons.  

From queuing theory standpoint, a welfare hospital department can be viewed as a 

system of queues and different types of servers. A quantitative analysis of the wait time 
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problem in welfare hospital department is dependent upon the identification of a 

methodology which recognizes the structure of the problem as that of a queuing system. Two 

modes of analysis are generally suggested by the structure of this type of problem: queuing 

models and discrete event simulations. 

The Admitting department consists of four major areas: Front desk, Registration desk, 

Waiting area, and Financial Consulting area (within Business Department). When patient 

enters the Admitting department, they are asked by front-desk clerk to provide name and 

reason for visit. Admitting clerk determines patient’s type (No welfare (NW), 

Reimbursement to employer (RE), Social Security Service (SS) and the 30 baht for welfare 

health service (Gold cards (30W)) and create new account using Hospital Informational 

System. Admitting serves most outpatient and inpatient types, with an exception for: No 

welfare (NW), Reimbursement to employer (RE), Social Security Service (SS)  and the 30 

baht for welfare health service (Gold cards (30W)) It is essential to assess the relationship 

between hospital services and average waiting time in a queuing system. The clerk also 

clarifies if patient was pre-registered for this service or not. If the answer is yes, the clerk gets 

patient’s documentation ready for the admission representative. Then the patient receives an 

assigned number and is asked to wait in admitting waiting area for admitting representative to 

call the number. Admitting representative determines if the patient ever receives the service 

at the hospital and if so, pull up patient’s data from Meditech and verifies patient’s personal 

information. If the patient is visiting the hospital for the first time, admitting clerk creates 

patient’s profile in the Hospital Information Database system. 

Law and Kelton (2001) proposed an algorithm of a successful computer simulation 

study. This algorithm includes the following key steps: 1. Problem formulation, 2. Data 

collection and the conceptual model design, 3. The validation of the model, 4. The 

constructions of the computer representation of the model, 5. The verification of the model, 6. 

The design of experiments needed to address the problem, 7. Production runs using the 

computer model, 8. The statistical analysis of the data obtained from the production runs, and 

9. The interpretation of the results. 

First, even in the case of constant demand levels over the day, statistical fluctuations 

in individual patient waiting times and the variability in the time needed by a provider to 

service patients can create long delays even when overall average steady state capacity is 

greater than average demand. Second, the magnitude of delays is a log-linear function of the 

demand for hospital services level, and are thus impossible to predict without the use of a 

queueing model. (Green and Nguyen 2001). 

 

2  Methodology of Risk Rate Models 

 

2.1 Risk Rate Models analysis 

 

Let Yi be the number of patients of an event of interest for the ith subject and denote 

the independent variables by xi, i= 1,…,n. We assume that Yi follows a Poisson distribution, 

Yi ~ Poisson (
i ), with density 
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Let t1 , t2,…,tn be the waiting times of  the nth  individual, and assume the 

distribution function to be F(t) = Pr(T < t) with probability density function f(t). The risk rate 

is denoted by, and can be viewed the instantaneous probability of an event in the interval [t, 

t+1], given the event has not occurred before time t. formally, the risk rate (Charles and 

McFadden 1981), is defined by the following limit: 

0

1

t
( t ) lim Pr[ t T t t |T t ]

t


 
     


     (2) 

 

The density of an exponential distribution with parameter   is given by 

f(t) =  te    ,t>0.        (3) 

The distribution function equal 

F(t) = 1 te   ,     t   0.       (4) 

For this distribution, we have 

E(x) = 
1


 ,      2

2

1
( )x


 ,       (5) 

The probability of an event not occurring up to time t is given by the function 

1 tP( t ) Pr[T t ] F( t ) e            (6) 

Assuming the waiting times are exponentially distributed, the equation (6) may be written as:

 i( t )
P( t ) e


          (7) 

The risk rate is defined by the ratio. 
1
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The general risk rate model may be written as: 0 1 1 n n( x ... x )T

i i( x ) e
      

    (9) 

where xT= [1, x1, x2, …, xn], and 0,
,1,…,n are unknown constants as the rate is determined 

by several regressors. This exponential risk rate model can be estimated using a Poisson 

regression Models for counts. In a time interval of length t, the probability of y events is 

given by: 
y ( t )( t ) e

Pr( y | ,t )
y!






  (10) 

Because the mean number of events in the time interval tis t  , for the ith individual, the 

expected number of events in the time interval ti is 

i i it  , or 
 

T
i i( x )

i it e       (11) 

Taking the log of the Poisson means results in the log-linear regression model:  


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T
i i( x )i
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e
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Namely,    T

i i i ilog( ) log( t ) x  ,        (13) 
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2.2. Goodness-of-Fit 

 

The log-likelihood function of the process cannot be the only index of fit because the 

likelihood-ratio-statistics is dependent on the size of the sample. Different values of the log-

likelihood function result when competing models, namely models that differ in the number 

of parameters, are fitted to the same data. The number of parameters, in general, should be 

more than one, and significantly less than the number of observations. To assess the model 

goodness-of-fit, we need to know how one model fits relative to another. An indicator of a 

model goodness-of-fit that measures the extent to which the current model deviates from a 

more generalized model is given by the likelihood-ratio-statistics:  

),log(log2log2G 2

fc

f

c LL
L

L















        (14) 

where log cL is the log-likelihood of the current model, and log
fL is the log-likelihood of the 

more generalized model. The likelihood ratio statistics has a Chi-Square distribution with

12 KK  degrees of freedom, where 2K and 1K denote the number of parameters in the more 

generalized model and the current model, respectively (McCullagh and Nelder 1989). 

 

2.3. Marginal Effects 

 

For Poisson regression, the marginal effects can be thought of as the relative risk 

associated with a certain variable.  The overall mean effect in (15) is 
TT ( x )( x ) e           (15) 

Then, the marginal effect due to the thk  factor can be considered as 

 
T ˆ( x )

k k
ˆ x e          (16) 

where kx is the mean of the 
thk  factor values in the sample and 

T
x is the vector of the means 

of the factor values in the sample. An estimate of k can be computed as 

( )

k e           (17) 

 

3  Estimation results and interpretation 

 

          We assume that victims arrive at the first hospital at moment t, and the inter-arrival 

time is exponential and that the arrival rate is (t) ; there are s(t) parallel servers in the 

hospital, the service time is exponential and that the service rate is μ(t); and the hospital can 

accommodate the largest number of victims is N. 

Setting the inter-arrival time as, and there is only one event (arrival or completing 

treatment) at most occur in 𝛥(t). If there are K victims at moment t in the system, and: 

1) The arrival probability (t) 𝛥(t) is when only one victim arrives at the hospital 

during  𝛥(t).; 

2) The arrival probability o(𝛥t); is when more than one victims arrive at the hospital 

during 𝛥(t); 
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3) Assuming that the arrival time between victims is independent during 𝛥t the 

service probability completed a victim is min(s(t),K)μ(t)𝛥t in  𝛥t; 

4) The service probability completed more than one victim is o(𝛥t); in  𝛥t. 

 If the arrival victims follow the first three assumptions, they will be subject to the 

non-homogeneous Poisson process. The value of  𝛥t can be small enough to reduce the error 

of calculating the transient probability. 

We use pi(t) to denote the probability of i victims in the system at the moment t based 

on the initial system. Therefore, P0(0) = 1 if  i > 0, Pi(0) = 0. Then according to the following 

equation, we can calculate the probability of i victims in the system. 

This result is graphically depicted in Fig. 1, is the M/M/1 and the M/M/s queue, which 

shows the probability of n outpatients arriving in the system (Pn) slowly decreases as the 

number n outpatients arriving in the system (Pn) increases and similarly Poisson distribution. 

Suppose we observe a non-homogeneous Poisson process X (t) with rate (t) by Poisson 

regression analysis. Another categorical class of log-linear models that are commonly 

considered is that in which log ( (t)) is assumed to be a polynomial with unknown 

coefficients.  

 

The M/M/1queue and The M/M/s queue of Probability of n outpatients arriving in system  

 
 

Fig 1. We find that the probability of n outpatients arriving in the system slowly decreases as 

the number n outpatients arriving in the system increases and similarly Poisson distribution. 
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The data set was obtained quantitative data from a survey by the Nakhonpathom 

Hospital in Thailand for the year 2017 in Fig.1 above was used to estimate the probability of 

n outpatients arriving in the system and number of n outpatients arriving in the system. The 

M/M/1 queue of probability of n outpatients arriving in the system (Pn) have Reimbursement 

to employer (RE), the 30 baht for welfare health service (Gold cards (30W)),  Social Security 

Service (SS)   and  No welfare (NW) respectively. The M/M/1 queue of probability of n 

outpatients arriving in the system (Pn) slowly decreases as the number n of outpatients 

arriving in the system increases, similar to the Poisson distribution The M/M/s queue of 

probability of n outpatients arriving in the system (Pn) have Reimbursement to employer 

(RE), the 30 baht for welfare health service (Gold cards (30W)), Social Security Service (SS) 

and No welfare (NW) respectively. The M/M/s queue of probability of n outpatients arriving 

in the system (Pn) slowly decreases as the number n of outpatients arriving in the system 

increases, similar to the Poisson distribution 

The following data was obtained quantitative data from a survey by the 

Nakhonpathom Hospital in Thailand for the year 2017. The Admitting Department is one of 

the most highly congested hospital services, and faces a great deal of pressure, compared with 

other components of the health care system. Admitting clerk determines patient’s type (No 

welfare (NW), Reimbursement to employer (RE), Social Security Service (SS) and the 30 

baht for welfare health service (Gold cards (30W)) and create new account using Hospital 

Informational System. Admitting serves most outpatient and inpatient types, with an 

exception for: No welfare (NW), Reimbursement to employer (RE), Social Security Service 

(SS) and the 30 baht for welfare health service (Gold cards (30W)). It is essential to assess 

the relationship between hospital services and average waiting time in a queuing system. 

Using SAS to perform the iterations necessary for the maximum likelihood method, the 

following results have been obtained. 

 

Table 1  Contingency Table of Outpatients 

 

 

 

 

 

 

 

 

 

 

 

 

To develop a Poison regression Models model for the above situation, we need to 

define a model for the expected number of patients for welfare cases, E (Yij) in terms of the 

variables of interest. Here, two underlying variables are of interest, “waiting time” and 

“welfare”. Since “waiting time” has been categorized into seven groups, we will use six 

 Hospital Services  

Average waiting time NW (h1) RE (h2) SSS (h3) 30W (h4) Total 

1-20                     (t1) 

21-40                   (t2) 

41-60                   (t3) 

61-80                   (t4) 

81-100                (t5) 

101-120              (t6) 

> 120                  (t7) 

 

 

10 

 

33 

 

4 

 

6 

12 

8 

7 

1 

7 

9 

 

5 

 

 

3 

33 

31 

1 

 

30 

 

4 

46 

62 

9 

45 

30 

4 

Total 47 33 22 98 200 
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dummy variables to index them. The variable “welfare” which contains four categorizes, 

requires only three dummy variables. Thus, one possible model for the expected number of 

patient for welfare cases in the (i,j)th group can be written as: 

E(Yij) = ij=ijij , where     logij= +E, i =1, 2, …, n, j = 1, 2, …, m. 

 Using this model, we can write the risks Ij in terms of the parameters i and to obtain 

logi0= +i   and   logi1= +i +, 

since              logi1 - logi0=( +i + - -i ) 

                       logi1 - logi0 =  , so 
( )

k e   

4  Model Results  

 

The data set in Table 1 above was used to estimate the average waiting time and 

hospital services for medical and health services on the Poisson regression analysis with 

hospital services variables characterized by the marginal effect (
( )

k e  ). Two separate 

models were specified and estimated for each state since the various causal factors vary over 

time, as a result, significant level of causal variables are not expected to be identical for each 

model. The model is to compare the average waiting time (t) and hospital services (h). We 

also computed a chi-square test relation log-linear model and Poisson regression Models: 

Saturated log-linear model: log = +iti+ jhj+ijtihj    

 (18) 

Poisson regression Models: 
0 1 1 2 2 3 3log       ij i i ijx x x i=1,2,…,n;j=1,2,..,m  

 (19) 

where  are dummy variables and the interaction variable is, and the variable x1 corresponds to 

the No welfare (NW) case, x2 corresponds to the Reimbursement to employer (RE) case, x3 

corresponds to the Social Security Service (SS) case, x4 corresponds to the 30 baht for 

welfare health service (Gold cards (30W)) case, x5 corresponds to the group with average 

waiting time 1-20 min, x6 corresponds to the group with average waiting time 21-40 min, x7 

corresponds to the group with average waiting time 41-60 min, x8 corresponds to the group 

with average waiting time 61-80 min, x9 corresponds to the group of with average waiting 

time 81-100 min, x10 corresponds to the group with average waiting time 101-120 min, 

x11corresponds to the group with average waiting time > 120 min, and x12= x1 x5 , x13= x2 x5 , 

x14= x3 x5 ,…,x39=x4 x11. 

A saturated log-linear model rate defined. We use the deviations between the 

maximized log-likelihood from each model to perform a series of Chi-square tests in order to 

ascertain which model gives the best fit.  

So, the saturated log-linear model is   












n

1i
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1j
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1i
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1j
j

h
i

t
ij

μ
j

h
i

μ
i

t
i

μμlog                  

(20) 

The main effects model of factors t and w is    






n

1i

m

1j
j

h
i

μ
i

t
i

μμlog                       

 (21) 
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The main effects model of factor t is  

1

  


n
log(λ) μ μ t

i i
i

                                       

 (22) 

The main effects model of factor w is    



m

j
j

h
i

μμlog
1

      

 (23) Poisson regression Models: 

So, the saturated log-linear model is  
0

1

   


28
log(λ) x

i i
i

                                      

 (24) 

The main effects model of factors t and w is 
0

1

   


11
log(λ) x

i i
i

                         

 (25) 

The main effects model of factor t is  0

1

   


7
log(λ) x

i i
i

                                     

 (26) 

The main effects model of factor w is 
0

1

   


4
log(λ) x

i i
i

                                    

 (27) 

The following results were obtained. 

The saturated log-linear model yields  

log( )  = -14.8949+16.2841h1-0.6423h2 -

1.1326h3+16.1394t1+18.406t2+18.8536t3+17.6167t4+18.10t5+ 18.2963t6-32h1 t1-16 h2t1-

0.0365h3t1-32h1t2-0.0718 h2t2-0.2821h3t2-15.9804h1t3-0.5691h2t3-0.4642h3t3-32h1t4-16h3t4-

16h1t5+32h1t6-16h2t6-16h3t6,           (28) 

log-likelihood = 383.3958,  df = 26 

The main effects model of factors w and t yields 

log( ) =0.9728+0.04h1-0.962h2-1.559h3-

0.0957t1+2.588t2+2.9627t3+1.6526t4+2.5138t5+2.4172t6 , (29)  

log-likelihood = 375.2952,Chi-square=10.857, df = 17 

The main effects model of factor yields  

log( ) =0.05539-0.1605t1+2.481t2+2.7188t3+1.2t4 +12.4825 t5+2.8036 t6,       

(30) 

log-likelihood = 341.413,Chi-square=80.413,df=20 

The main effects model of factor h yields 

log( ) =3.2908-0.4153h1-1.1057h2-1.6614h3,          (31) 

log-likelihood = 307.565,Chi-square=125.923,df =23 
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Goodness-of-Fit 

Using these results, we tested the competing models using the likelihood-ratio 

statistics as described in section 2.2 in order to determine in goodness of fit. To perform the 

tests, we started by testing the saturated model in (30) against the main factors model in (31), 

and then tested the main factors model against its nested counterparts. The results of Chi-

square tests, performed with  = 0.05, are as follows: 

Table 2.Test goodness-of-fit model of hospital services 

 

 

 

 

 

 

 

The main factors model in (29) compared to saturated model (with all the 

interactions) in (28) has adequate fit model. The model in (29) has adequate fit compared to 

all models. The main factors of welfare model in (31) compared to all models in (29). The 

model in (31) has adequate fit compared to welfare model. Thus, we decided to choose the 

main factors model in (31) as the adequate model for this data set. 

The main effects model; log( ) = 0 1 1 2 2 3 3 4 4x x x x         

log( )  = 3.2908-0.4153w1-1.1057 w2-1.6614w3-0.00001w4   (32) 

Table 3. Mean marginal effect of hospital services 

Variable Marginal effect 

No welfare (NW),                                                                      (x1 )                                                         

Reimbursement to employer (RE)                                             (x2 )                                  

Social Security Service (SS)                                                      (x3)                                       

The 30 baht for welfare health service (Gold cards (30W))       (x4)                          

e- 0.4153 = 0.66014 

e- 1.1057 = 0.33098 

e- 1.6614 = 0.18987 

e- 0.00001 = 0.99999 

 

Tables 2 and 3 shows that the parameter estimates of hospital services are significant 

at the 5% level. The results indicate into arrive at better predictions of health services. As for 

the hospital services class, the categories are No welfare (NW), Reimbursement to employer 

(RE), Social Security Service (SS)  and the 30 baht for welfare health service (Gold cards 

(30W)). The marginal effects are computed as described in Section 2.3. The marginal effect 

for the first factor, The No welfare (NW), group, is calculated as 1 1
ˆ ˆexp( )   = 0.66014. 

This means, the target population of the No welfare (NW) group has a 0.66014 times. The 

marginal effect for the second factor, The Reimbursement to employer (RE) group, is 

calculated as 2 2
ˆ ˆ exp( )  = 0.33098. This means the target population of the Reimbursement to 

employer (RE) group has a 0.33098 times. The marginal effect for the third factor, The Social 

Security Service (SS) group, is calculated as 3 3
ˆ ˆ  exp( ) 

 
= 0.18987. This means the target 

population of Social Security Service (SS) group has a 0.18987 times. The marginal effect for 

the fourth factor, The 30 baht for welfare health service (Gold cards (30W)) group, is 

Test G2 Df 

(29) vs (28) 

(30) vs (29) 

 (31) vs (29) 

-2[(375.2952)-(383.3958)]=16.2012 

-2[(341.4130)-(375.2952)]=67.7644  

-2[(307.5654)-(375.2952)]=135.4596 

  9 

  3 

  3   
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calculated as  4 4exp   = 0.99999. This means the target population of the30 baht for 

welfare health service (30W) group has a 0.99999 times. 

This results in a monotonic increase in the waiting time rate function. This result is 

graphically depicted in Fig. 2, which shows a clear increase in the waiting time rate function 

for categorical welfare variables. 
Mean waiting time rate

Time (minute)
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Social Security Service 

  

Fig. 2. The waiting time rate function is linearly increasing for each of the categorical welfare 

variables. 

As a result, significant levels of causal variables are not expected to be identical for 

each model. We find Fig.2 that 30 baht for welfare health service (Gold cards (30W)) 

category has a higher rate of increase in the average waiting time. The marginal effect is a 

basis function that can be used in the Poisson regression. It allows into arrive at better 

predictions of hospital service and rehabilitation decision making. 

5 Conclusions 

This paper has surveyed the use of queuing theory for the analysis of different types 

of waiting time and welfare hospital. Models for estimating waiting time and welfare 

hospital, models for system design, and models for evaluating appointment systems have 

been presented. The survey has reviewed models for departments (or units), facilities, and 

systems. We find that the 30 baht for welfare health service (Gold cards (30W)) category has 

a higher rate of increase in the average waiting time. The marginal effect (
k̂ ) is a basis 

function that can be used in the Poisson regression analysis for flexibility. In this paper, we 

have described an easily implemental estimation procedure for the coefficients of hospital 

services in the queuing system. The estimation approach is based on using a series of 

prediction probabilities. Furthermore, the methodology for determining the prediction 

probabilities from the waiting time model is developed. Finally, testing for statistical 

significance was carried out and the risk rate function was found to be increasing.  

Waiting time in the welfare hospital can be reduced through implementation of 

quantitative methods, understanding of best practices, and commitment to change. For 

instance, queuing models of welfare hospital department activity have a broad range of 
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potential applications. One of the most promising areas is the study of welfare hospital 

overcrowding. A critical capability afforded by patient flow simulation is the reconstruction 

of the factors that are responsible for overcrowding. This allows a more detailed 

understanding of the relationship between the observed conditions and related outcomes that 

could lead to informed optimization decisions. 

As long as increasing the productivity of healthcare organizations remains important, 

analysts will seek to apply relevant models to improve the performance of healthcare 

processes. This paper shows that many models are available today. However, analysts will 

increasingly need to consider the ways in which distinct queuing systems within an 

organization interact. Developing appropriate models of the links (or interfaces) between the 

distinct queuing systems is an important direction for future research. 
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