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Abstract

This paper deals with the approximation of discrete real-valued functions by first-degree splines (broken
lines) with free knots for arbitrary Lp-norms (1 ≤ p ≤ ∞). We prove the existence of best approximations
und derive statements on the position of the (free) knots of a best approximation. Building on this, elsewhere
we develop an algorithm to determine a (global) best approximation in the L2-norm.
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1. Introduction and problem formulation

First-degree splines (broken lines) with fixed knots have a series of notable properties: In interpolation
they preserve convexity, positivity and monotonicity and are cheap to calculate (see for example [2]). First-
degree splines can also help fight the dreaded Gibbs phenomenon (see for example [5]). Broken lines are
easily smoothed should smooth curves be needed (see for example [3]).

If approximation with a minimal number of knots of knots is wanted or the knots have a meaning from
the user perspective, interpolation does not suffice and the knots must be positioned optimally. Thus, we
have an approximation problem to solve.

In approximating a real-valued function of a real variable by first-degree splines with free knots, the
existence of a best approximation in the continuous case is guaranteed (see for example Rice [4] for splines
of degree m ∈ N). Globally convergent numerical methods are not known.

In this paper the existence of a best approximation by first-degree splines with free knots for the discrete
case is shown and proof given for characteristic properties of a best approximation. A globally convergent
numerical method based on this is derived in [1].

Difficulties stem among others from the fact that a minimizing sequence bounded on a discrete domain
can be unlimited if we consider the related sequence of continuous functions.

To begin with, we summarize the most important notations: Let Pm denote the real polynomials of
degree smaller or equal m. Let [a, b] be a real interval with a < b. For a =: t0 < t1 < . . . < tk < tk+1 := b

and m, k ∈ N
Sm(t1, . . . , tk) :=

{
s ∈ Cm−1[a, b]

∣∣ s|(tj ,tj+1) ∈ Pm , j = 0, 1, . . . , k
}

denotes the set of splines of degree m with k fixed (simple) knots t1, . . . , tk. By the splines of degree m ∈ N
with at most k ∈ N free (simple) knots we mean the set

Smk [a, b] := {s ∈ Cm−1[a, b] | there exist points

a =: t0 < t1 < . . . < tk < tk+1 := b

with: s|(ti,ti+1) ∈ Pm for i = 0, 1, . . . , k} .

Here, we call tj a proper (or active) knot of s ∈ Sm(t1, . . . , tk) or s ∈ Smk [a, b] if the m-th derivate of s has
a jump discontinuity in tj , otherwise tj is called improper (or inactive) knot.
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Smk [a, b] is not closed. In Smk [a, b] generally hence there exists no best approximation for a given f ∈
C[a, b]. Such is only assured in the closure of Smk [a, b], i.e., if knots are allowed to coalesce, see Rice ([4],
Theorem 10-2). Hence, it is a feature of discrete approximation with broken lines that there are best
approximations already in S1

k[a, b] as we will demonstrate below.

Let a =: x0 < x1 < . . . < xµ+1 := b be µ + 2 real abscissae and f0, . . . , fµ+1 ∈ R values of a real
function f : [a, b] → R. We define vectors X := (x0, . . . , xµ+1)t, F := (f0, . . . , fµ+1)t and for arbitrary
g : {x0, . . . , xµ+1} → R set g(X) := (g(x0), . . . , g(xµ+1))t. With the vector norm ‖·‖p, 1 ≤ p ≤ ∞, our
approximation problem then reads:

Approximation problem 1. Determine s∗ ∈ S1
k[a, b] with

‖f − s∗‖p,X := ‖F − s∗(X)‖p = inf
s∈S1

k[a,b]
‖F − s(X)‖p .

In what follows, we assume generally that k ≥ 1 and µ ≥ k + 1 ≥ 2 since otherwise we are looking for a
purely polynomial approximation or else the data can be reproduced exactly in S1

k[a, b].

Definition 2. By a minimizing sequence of Problem 1 we mean a sequence
(
s(i)
)
i∈N with s(i) ∈ S1

k[a, b]
and ∥∥∥f − s(i)∥∥∥

p,X
−→ inf

s∈S1
k[a,b]

‖f − s‖p,X

for i→∞.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

t1 t2 t3 t4 t5

(xi, fi)

xi

tj = xi

tj 6= xi

s

Figure 1: A first-degree spline (broken line) s ∈ S1
5 [a, b] as approximation to the µ + 2 = 19 data

(x0, f0), . . . , (x18, f18). s has k = 5 simple knots t1, . . . , t5 and the boundary knots t0 := a := x0 and
t6 := b := x18.

2. Existence theorem and other properties

Our objective in this section is to demonstrate the existence of a best approximation in S1
k[a, b] as

solution of Problem 1. It features only simple knots, is continuous, and has other properties important for
the numerical calculation. We pave the way for the summarizing Theorem 12 in several steps.

Lemma 3. There is a minimizing sequence with bounded function values and derivatives on the interval
[a, b]. More precisely: There is a constant M > 0 and a minimizing sequence s(i) ∈ S1

k[a, b] with∥∥∥f − s(i)∥∥∥
p,X
−→ inf

s∈S1
k[a,b]

‖f − s‖p,X

for i→∞ where ∣∣∣s(i)(x)
∣∣∣ ≤M and

∣∣∣∣ ddxs(i)(x)
∣∣∣∣ ≤M for all x ∈ [a, b] . (1)

Here, the upper estimates for the derivative in (1) in the knots of s(i) hold for the left- und right-hand
derivatives.
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Remark 4. The conclusions in Lemma 3 are not obvious as can be seen from the following example of a
minimizing sequence: Despite boundedness in the xj (here: −1, 0, 1) the s(i) can have unbounded functions
values and derivatives (in t

(i)
2 = 0.5 in this example). The function

s(i)(x) :=


−x , x ≤ − 1

i

1 + (i− 1)x , − 1
i < x ≤ 1

2

i+ (1− i)x , x > 1
2

is from S1
2 [−1, 1] and has the function value s(i) (xj) = 1 in x0 := −1, x1 := 0 and x2 := 1. But the sequence(

s(i)
)
i∈N is not bounded on [−1, 1] since s(i)

(
t
(i)
2

)
= s(i)

(
1
2

)
= 1

2 (i+ 1); see Fig. 2.

x
-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5 s(2)

s(3)

s(4)

s(5)

s(10)

Figure 2: A few terms of the sequence
(
s(i)
)
i∈N from Remark 4. The s(i) are bounded on a discrete set

(here: −1, 0, 1) yet unbounded in between (here: 0.5).

Proof of Lemma 3: Let s(i) ∈ S1
k[a, b], i ∈ N, be the terms of a minimizing sequence. Without loss of

generality all knots of the s(i) are proper knots with discontinuous first derivatives. We will construct a new
sequence with the claimed properties and with unnecessary oscillations ironed out. In this process function
values in the data abscissae s(i) (xj), 0 ≤ j ≤ µ+ 1, remain unchanged such that the approximation power
of the original s(i) on X and thus the property of being a minimizing sequence is preserved.

Since
(
s(i)
)
i∈N is a minimizing sequence we have

M ′ := sup
l∈N

0≤j≤µ+1

∣∣∣s(l) (xj)
∣∣∣ < ∞ . (2)

We set

M ′′l := max
1≤q≤µ+1

∣∣∣∣s(l) (xq)− s(l) (xq−1)
xq − xq−1

∣∣∣∣ , (3)

M ′′′ sup:=
l∈N

M ′′l , (4)

M ′′′′ := M ′ + (b− a)M ′′′ and (5)

M := max (M ′′′,M ′′′′) . (6)

We will show that M ′′′ is an upper bound for the absolute values of the derivatives and M ′′′′ for the absolute
values of a (suitably redefined, if necessary) minimizing sequence on [a, b]. (2) implies finiteness of the values
(3) to (6), in particular M <∞. We start the proof with the following

Assertion 5. Without loss of generality the absolute values of the derivatives of the s(i) are bounded by
M ′′i : ∣∣∣∣ ddxs(i)(x)

∣∣∣∣ ≤ M ′′i for all x ∈ [a, b] . (7)
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Proof. We prove Assertion 5 by induction for the interval [x0, xq], q = 1, 2, . . ., µ + 1. If necessary, s(i) is
changed such that estimate (7) holds for the interval [x0, xq]. The function values s(i)(xj) remain unchanged
and the property of being a minimizing sequence and (2) to (6) are untouched. For simplicity the possibly
modified functions are denoted s(i) again.

For the induction basis, this means the interval [x0, x1], we have to check two cases:

Case 1: s(i) has at least one knot and thus t(i)1 ∈ (x0, x1). Then we move t(i)1 to x1 and replace s(i) on
[x0, x1] by the straight line connecting the points

(
x0, s

(i) (x0)
)

and
(
x1, s

(i) (x1)
)
. We denote the function

thus defined by s(i) again for which the upper estimate from (7) now holds.

x0 t
(i)
1

x1

s
(i)
old

s
(i)
new

Figure 3: Proof of Assertion 5, induction basis, case 1.

Case 2: s(i) has no knot in (x0, x1). Therefore s(i) is a straight line on [x0, x1] and the upper estimate
(7) holds.

For the induction step let s(i) be a minimizing sequence for which estimate (7) holds on [x0, xq−1]. We
show that a minimizing sequence exists for wich (7) holds on [x0, xq]. We have to consider several cases:

Case 1: s(i) does not have a knot in (xq−1, xq). Then s(i) is linear on [xq−1, xq] and (7) holds for all
x ∈ [x0, xq].

Case 2: s(i) has at least two knots (xq−1, xq). Replace s(i) on [xq−1, xq] by the straight line connecting(
xq−1, s

(i) (xq−1)
)

and
(
xq, s

(i) (xq)
)
. We denote the function from S1

k[a, b] thus defined with s(i) again.
The function values in all xj remain unchanged by this modification and (7) now holds for s(i) and all
x ∈ [x0, xq].

Case 3: s(i) has exactly one knot in (xq−1, xq).

Case 3.1: xq−1 or xq are likewise knots of s(i). Then we replace s(i) on [xq−1, xq] by the straight line
connecting

(
xq−1, s

(i) (xq−1)
)

and
(
xq, s

(i) (xq)
)
. The function thus constructed (denoted by s(i) again)

meets estimate (7) on [x0, xq].

Case 3.2: The knot t(i)j ∈ (xq−1, xq) is the only knot of s(i) in the interval [xq−1, xq].

We define the straight line connecting the points
(
xq−1, s

(i) (xq−1)
)

and
(
xq, s

(i) (xq)
)

σ(x) := s(i) (xq−1) + (x− xq−1)
s(i) (xq)− s(i) (xq−1)

xq − xq−1

and continue the distinction of cases with

Case 3.2.1: In this case s(i)
(
t
(i)
j

)
= σ

(
t
(i)
j

)
. Then s(i) is a straight line on

[
xq−1− ε, xq

]
for sufficiently

small ε > 0 and the induction hypothesis extends from
[
x0, xq−1

]
to
[
x0, xq

]
.

Case 3.2.2: In this case s(i)
(
t
(i)
j

)
< σ

(
t
(i)
j

)
.

Case 3.2.2.1: Subcase q ≤ µ.

Case 3.2.2.1.1: We consider the case s(i) (xq+1) ≤ σ (xq+1). Since s(i)
(
t
(i)
j

)
lies strictly below the straight

(i)line σ, there must be a knot tj+1 ∈ (xq, xq+1) in the following section. Furthermore, there is a x ∈ (xq, xq+1]
such that the point 

(
x, s(i)(x)

) 
also lies on the straight line σ. We replace s(i) on [xq−1, x] by σ. Thus,

(i) (i)the knots t and t vanish whereas x 1 and x are new knots. We denote the function thus constructedj j+1 q−
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by s(i) again. (7) now holds for s(i) on [xq−1, xq] by construction and because of the induction hypothesis
therefore on [x0, xq].

xq−1 t
(i)
j

xq t
(i)
j+1

x xq+1

s
(i)
old

s
(i)
new

Figure 4: Illustration of the proof of Assertion 5, case 3.2.2.1.1.

Case 3.2.2.1.2: In this case s(i) (xq+1) > σ (xq+1).

Case 3.2.2.1.2.1: s(i) has exactly one (proper) knot t(i)j+1 in (xq, xq+1]. We denote whith ϕ the straight
line with function value s(i) (xq) and derivative d

dxs
(i) (xq) in xq.

Case 3.2.2.1.2.1.1: In this case s(i) (xq+1) < ϕ(xq+1). Let x ∈
(
xq−1, t

(i)
j

)
be the first (smallest) point of

intersection of s(i) with the straight line running through the points
(
xq, s

(i) (xq)
)

and
(
xq+1, s

(i) (xq+1)
)
.

We replace s(i) on [x, xq+1] by this straight line. Thus, x and xq+1 become new knots while t(i)j and t(i)j+1 are
no longer knots. The function thus defined is denoted by s(i) again. Estimate (7) holds for s(i) on [x0, xq−1]
because of the induction hypothesis and on [xq−1, x] because the derivative of s(i) in this interval equals the
left-hand derivative of s(i) in xq−1 (because of the induction hypothesis again). Finally, (7) holds on [x, xq]

because d
dxs

(i)(z) = s(i)(xq+1)−s(i)(xq)
xq+1−xq for all z ∈ [x, xq] which follows from the construction of s(i).

xq−1 x
t
(i)
j

xq t
(i)
j+1

xq+1

s
(i)
old

s
(i)
new

Figure 5: Illustration of the proof of Assertion 5, case 3.2.2.1.2.1.1

Case 3.2.2.1.2.1.2: In this case s(i) (xq+1) = ϕ(xq+1). Then s(i) is a straight line on
[
xq, xq+1

]
and the

only proper knot t(i)j+1 in
(
xq, xq+1

]
must coincide with xq+1. Estimate (7) holds even on

[
x0, xq+1

]
.

Case 3.2.2.1.2.1.3: Here we consider the case s(i) (xq+1) > ϕ(xq+1). Then there exists a point x ∈(
xq, t

(i)
j+1

)
as intersection of the straight line σ connecting the points

(
xq−1, s

(i) (xq−1)
)

and
(
xq, s

(i) (xq)
)

with the straight line connecting the points
(
t
(i)
j+1, s

(i)
(
t
(i)
j+1

))
and

(
xq+1, s

(i) (xq+1)
)
. We replace s(i) on

(xq−1, x) by σ and on [x, xq+1] by the second named straight line. The absolute values of the derivatives of
the thus defined (new) broken line s(i) are again bounded by M ′′i .

Case 3.2.2.1.2.2: s(i) has no (proper) knot in (xq, xq+1]. Then t(i)j is the only knot of s(i) in [xq−1, xq+1].

(7) holds on the interval [x0, xq−1] because of the induction hypothesis. (7) also holds on
[
xq−1, t

(i)
j

]
because of the induction hypothesis since for z ∈

[
xq−1, t

(i)
j

]
we have: d

dxs
(i)(z) = d

dxs
(i)
(
x−q−1

)
where

the latter denotes the left-side derivative of s(i) in xq−1. Finally, (7) ist valid on
[
t
(i)
j , xq

]
because

d
dxs

(i)(z) = s(i)(xq+1)−s(i)(xq)
xq+1−xq holds for all z ∈

[
t
(i)
j , xq

]
.

Case 3.2.2.1.2.3: There are at least two (proper) knots t(i)j+1, t
(i)
j+2 in the intervall

(
xq, xq+1

]
. Then we

replace s(i) on 
[
xq−1, xq

] 
by the straight line connecting the points 

(
xq−1, s(i)(xq−1)

) 
and 

(
xq, s(i)(xq)

) 
and

on 
[
xq, xq+1

] 
by the straight line connecting 

(
xq, s(i)(xq)

) 
and 

(
xq+1, s(i)(xq+1)

)
. The knots tj

(i)
, tj

(i
+
)
1 and
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old

s
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Figure 6: Illustration of the proof of Assertion 5, case 3.2.2.1.2.1.3.

t
(i)
j+2 thus disappear and xq−1, xq, xq+1 become knots by this modification. The thus modified s(i) fulfills (7)

on
[
x0, xq−1

]
because of the induction hypothesis and on

[
xq−1, xq+1

]
by construction.

Case 3.2.2.2: Now we consider the case q = µ + 1. Then we move the knot in
(
xq−1, xq

)
onto xq−1

and replace s(i) on the interval [xq−1, xq] by the straight line connecting the points
(
xq−1, s

(i) (xq−1)
)

and(
xq, s

(i) (xq)
)
. The estimate (7) now holds for the modified s(i) on

[
x0, xµ+1

]
.

Case 3.2.3: We consider the case s(i)
(
t
(i)
j

)
> σ

(
t
(i)
j

)
. This case is treated in analogy to case 3.2.2 an

its subcases.

This proves Assertion 5.

We can now conclude the proof of Lemma 3: For terms s(i) of a minimizing sequence the
∣∣s(i)∣∣ in (2)

are bounded with respect to i ∈ N and 0 ≤ j ≤ µ+ 1 and therefore also the M ′′i in (3) by M ′′′ ∈ R.

For a minimizing sequence s(i) (modified as in the proof of Assertion 5, if necessary) the derivatives are
therefore bounded by M ′′′ on [a, b] and the function values by M ′′′′. Thus, M := max(M ′′′,M ′′′′) bounds
function values and derivatives of the s(i) on all of [a, b]. �

We now turn to the promised existence theorem:

Theorem 6. With 1 ≤ p ≤ ∞ there is a s∗ ∈ S1
k[a, b] such that

‖f − s∗‖p,X inf=
s∈S1

k[a,b]
‖f − s‖p,X .

Proof. Let s(i) ∈ S1
k[a, b] be a bounded minimizing sequence according to Lemma 3 with M as bound.

The following additional claims can be fulfilled by transition to a subsequence if necessary: For fixed r with
0 ≤ r ≤ k each s(i) has r (proper) knots t(i)1 , . . . , t

(i)
r with

a =: t(i)0 < t
(i)
1 < . . . < t(i)r < t

(i)
r+1 := b . (8)

Furthermore, let all sequences of knots
(
t
(i)
j

)
i∈N

be convergent and we denote by τ1, . . . , τr′ the distinct

limits in the open interval (a, b) where r′ ≤ r. In addition, τ0 := a and τr′+1 := b can also be limits of these
sequences. Then holds

a =: τ0 < τ1 < . . . < τr′ < τr′+1 := .b (9)

With
τl,l+1 :=

1
2

(τl + τl+1) , 0 ≤ l ≤ r′ (10)

let the sequences (
s(i) (τl,l+1)

)
i∈N

and
(
d

dx
s(i) (τl,l+1)

)
i∈N

(11)

(bounded because of Lemma 3) also be convergent for each l with 0 ≤ l ≤ r′.

We can now progress to the definition of s∗: For x ∈ [τl, τl+1), 0 ≤ l ≤ r′ − 1 or x ∈ [τr′ , τr′+1] we set

s∗(x) := lim
i→∞

s(i) (τl,l+1) + (x− τl,l+1) · lim
i→∞

d

dx
s(i) (τl,l+1) . (12)
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By definition s∗ : [a, b]→ R is linear on [τl, τl+1) for 0 ≤ l ≤ r′ − 1 and on [τr′ , τr′+1].

We prove successively:

Assertion 7. The sequence
(
s(i)
)
i∈N converges uniformly to s∗ on [a, b]:

∀ ε > 0 ∃ i0 ∈ N : ∀ i ≥ i0, x ∈ [a, b] :
∣∣s(i)(x)− s∗(x)

∣∣ < ε .

Assertion 8. s∗ ∈ S1
k[a, b] is piecewiese linear and continuous on [a, b].

Assertion 9. The sequence
(
s(i)
)
i∈N converges uniformly to the continuous, piecewiese linear function s∗.

Assertion 10. s∗ is a best approximation to f on X.

Proof of Assertion 7: Let all knots chosen in this proof be proper knots and ε > 0 be given arbitrarily
small. Let i0 ∈ N be chosen sufficiently great such that for all i ≥ i0:∣∣∣s(i) (τl,l+1)− s∗ (τl,l+1)

∣∣∣ < ε

4
for 0 ≤ l ≤ r′, (13)∣∣∣∣ ddxs(i) (τl,l+1)− d

dx
s∗ (τl,l+1)

∣∣∣∣ < ε

4(b− a)
for 0 ≤ l ≤ r′, (14)∣∣∣t(i)l − lim

i→∞
t
(i)
l

∣∣∣ < ε

8M
for l = 1, 2, . . . , r, (15)∣∣∣t(i)l − lim

i→∞
t
(i)
l

∣∣∣ < 1
2
· min
q=1,2,...,r′+1

(τq − τq−1) for l = 1, 2, . . . , r. (16)

For i ≥ i0 and x ∈ [a, b] we have x ∈
[
τj , τj+1

)
for a j with 0 ≤ j ≤ r′ (cases 1 and 2) or x = b (case 3). We

have to show:
∣∣s(i)(x)− s∗(x)

∣∣ < ε.

Case 1: x ∈ [τj,j+1, τj+1) holds, that is x lies in the right-hand half of [τj , τj+1).

Case 1.1: s(i) has no knot in [τj,j+1, x) and is therefore linear on this subintervall and from (13) and (14)
thus follows: ∣∣∣s(i)(x)− s∗(x)

∣∣∣
=

∣∣∣∣s(i) (τj,j+1) + (x− τj,j+1) · d
dx
s(i) (τj,j+1)

−
[
s∗ (τj,j+1) + (x− τj,j+1) · d

dx
s∗ (τj,j+1)

]∣∣∣∣
≤

∣∣∣s(i) (τj,j+1)− s∗ (τj,j+1)
∣∣∣ + (b− a)

∣∣∣∣ ddxs(i) (τj,j+1)− d

dx
s∗ (τj,j+1)

∣∣∣∣
≤ ε

4
+

ε

4
< ε .

Case 1.2: s(i) has a knot in [τj,j+1, x). Let t(i)l be the smallest knot of s(i) in the interval [τj,j+1, x). Then
follows τj,j+1 < t

(i)
l < x from (16) and we get:∣∣∣s(i)(x)− s∗(x)

∣∣∣
≤

∣∣∣s(i)(x)− s(i)
(
t
(i)
l

)∣∣∣+
∣∣∣s(i) (t(i)l )− s∗ (t(i)l )∣∣∣+

∣∣∣s∗ (t(i)l )− s∗(x)
∣∣∣

≤ M
∣∣∣t(i)l − x∣∣∣+

ε

4
+
ε

4
+ 2M

∣∣∣t(i)l − x∣∣∣
≤ M

∣∣∣t(i)l − τj+1

∣∣∣ +
2ε
4

+ 2M
∣∣∣t(i)l − τj+1

∣∣∣
≤ ε

8
+

2ε
4

+
ε

4
ε .<

Here, M (see (6)) is an upper bound for the derivatives of s(i), the upper estimate∣∣∣s(i) (t(i)l )− s∗ (t(i)l )∣∣∣ ≤ ε

4
+
ε

4
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τj,j+1 t
(i)
l

x τj+1

s∗
s(i)

Figure 7: Illustration of the proof of Assertion 7, case 1.2.

follows in analogy to case 1.1 from (13) and (14) and 2M is an an upper bound for the absolute values of
the derivatives of s∗. In addition, the last line of the above sequence of inequalities follows from the fact
that because of (16) the sequence

(
t
(q)
l

)
q∈N

converges to τj+1 which allows for an application of (15).

Case 2: x lies in the left half of [τj , τj+1): x ∈ [τj , τj,j+1). This case ist treated analogously to case 1.

Case 3: In this case x = τr′+1 = b. The proof can again be done in analogy to case 1, which completes
the proof of Assertion 7.

Next, we prove Assertion 8: Since s∗ is piecewise linear by construction it suffices to show that s∗ is
continuous in the knots τ1, . . . , τr′ . Let j be arbitrarily but fixed (1 ≤ j ≤ r′) and ε > 0 given. Because of
Assertion 7 there is a i0 ∈ N with∣∣∣s(i)(z)− s∗(z)∣∣∣ < ε

3
∀ z ∈ [a, b] , i ≥ i0 . (17)

Furthermore, for x ∈ (τj−1,j , τj) and y ∈ [τj , τj,j+1) let the following upper estimate hold:

|x− y| < ε

3M
=: δ . (18)

From that follows

|s∗(x)− s∗(y)|

≤
∣∣∣s∗(x)− s(i) (x)

∣∣∣+
∣∣∣s(i) (x)− s(i) (y)

∣∣∣+
∣∣∣s(i) (y)− s∗(y)

∣∣∣
<

ε

3
+ M |x− y| +

ε

3
<

ε

3
+

ε

3
+

ε

3
= ε,

where the second estimate follows from (17) and the boundedness of the derivatives of s(i), while the last
estimate holds because of (18). This proves Assertion 8.

Assertion 9 summarizes Assertion 7 and 8. The proof of Theorem 6 is concluded with the proof of
Assertion 10: Because the s(i) converge uniformly to s∗ (see Assertion 9) we conclude

lim
i→∞

s(i) (xj) = s∗ (xj) , j = 0, 1, . . . , µ+ 1.

Since without loss of generality
∥∥f − s(i)∥∥

p,X
converges to

inf
s∈S1

k[a,b]
‖f − s‖p,X

we get for p <∞

inf
s∈S1

k[a,b]
‖f − s‖p,X = lim

i→∞

∥∥∥f − s(i)∥∥∥
p,X

lim=
i→∞

µ+1∑
j=0

∣∣∣fj − s(i) (xj)
∣∣∣p
 1

p

=

µ+1∑
j=0

|fj − s∗ (xj)|p
 1

p

= ‖f − s∗‖p,X .
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The case p =∞ is treated in analogy.

In case r < k (s∗ has less than k knots) these can be completed by additional (k − r) improper knots,
such that s∗ is seen to be an element of S1

k[a, b] in this case, too.

This winds up the proof of Assertion 10 and the proof of Theorem 6 is thus completed. �

Remark 11. Lemma 3 also guarantees the uniform boundedness and equicontinuity of a (subsequence of
a) minimizing sequence. The Theorem of Arzelà-Ascoli therefore also implies that a minimizing sequence
possesses a subsequence converging uniformly to a continuous limit function.

For numerical prodedures it is advantageous to know more characteristic features of a best approximation.
In this connection it is helpful to distinguish between knots coinciding with a data abscissa and knots situated
between data abscissae. We call a knot tj of a first order spline s ∈ S1

k[a, b] an interior knot, when it lies
between two neighboring data abscissae, that is, there is a q with 0 ≤ q ≤ µ and xq < tj < xq+1. If tj
coincides with xq, that is, there is a q with 1 ≤ q ≤ µ and tj := xq, then tj ist called a data knot.

Theorem 12. Let µ ≥ k+ 1 ≥ 2 and 1 ≤ p ≤ ∞. For given data (x0, f0), . . ., (xµ+1, fµ+1) with x0 < x1 <
. . . < xµ < xµ+1 and f0, . . . , fµ+1 ∈ R exists a best approximation s∗ ∈ S1

k [x0, xµ+1]∥∥f − s∗∥∥
p,X

= inf
s∈S1

k[x0,xµ+1]

∥∥f − s∥∥
p,X

,

with the following additional features where t1, . . . , tk with t0 := x0 < t1 < . . . < tk < tk+1 := xµ+1 denote
the knots of s∗:

(a) There are no knots in the boundary regions. More precisely:

x0 < x1 ≤ t1 < . . . < tk ≤ xµ < xµ+1 .

(b) Data abscissae neighboring to interior knots are not knots.

(c) Between two (not necessarily neighboring) interior knots of s∗ lie at least two data abscissae which
are not knots of s∗.

(d) On or between neighboring knots lie at least two data abscissae:

∀ j, 0 ≤ j ≤ r : ∃ i, 0 ≤ i ≤ µ : tj ≤ xi < xi+1 ≤ tj+1 .

(e) If an interior knot is situated between two neighboring data abscissae, then no additional knot lies on
or between these data abscissae. That is, the proposition ”‘tj is a knot of s∗ with xq < tj < xq+1”’
implies tj−1 < xq and tj+1 > xq+1.

(f) Let tj be an interior knot. Then in each of the intervals (−∞, tj) and (tj ,∞) there is a data abscissa
from

{
x1, . . . , xµ

}
which is not a knot.

(g) For p < ∞ we have: Between an interior and a neighboring data knot of s∗ lies either exactly one
data abscissa xq which is then reproduced (tj < xq < tj+1, s∗(xq) = fq) or there exist at least two
data abscissae xq, xq+1 between the knots (tj < xq < xq+1 < tj+1).

(h) All interior knots are proper knots, that is, the first derivative is discontinuous in all interior knots.

Proof. From Theorem 6 we know that at least one best approximation exists in S1
k[a, b]. Let s∗ be a best

approximation from S1
k[a, b] with minimal number of interior knots. The r, 0 ≤ r ≤ k, proper knots of s∗

are denoted by τ0 := x0 < τ1 < . . . < τr < τr+1 := b. In a first step we prove (a) to (g) under the additional 
assumption r = k:

  We prove (a) by contradiction. Assume x0 = τ0 < τ1 < x1. Then we can reduce the number of interior 
knots by one by replacing s∗ on [x0, x1] by the straight line connecting 

(
x0, s∗(x0)

) 
and 

(
x1, s∗(x1)

)
. τ1

ceases to be interior point and x1 becomes a data knot whithout change of the approximation quality. This
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x0 τ1 x1

Figure 8: Illustration of the proof of Theorem 12 (a).

is a contradiction to the assumed minimal number of interior knots. The case xµ < τr < xµ+1 is lead to a
contradiction analogously.

To prove (b) let τj be an interior knot of s∗ and xq and xq+1 knots neighboring to τj , that is, xq < τj <

xq+1. If xq was a data knot we could replace s∗ on [xq, xq+1] by the straight line connecting
(
xq, s

∗(xq)
)

and
(
xq+1, s

∗(xq+1)
)

whithout change of the approximation quality. At the same time this modification
diminishes the number of interior knots by (at least) one which is a contradiction to the assumed minimal
number of interior knots. The arguments for xq+1 follow the same line.

xq τj xq+1

Figure 9: Illustration of the proof of Theorem 12 (b).

To prove assertion (c) by contradiction we assume that assertion (c) does not hold. We distinguish the
following cases:

Case 1: There lies no data abscissa between two interior knots τj and τj′ , that is, we have the situation
xq−1 < τj < τj′ < xq. By replacing s∗ on [xq−1, xq] by the straight line connecting (xq−1, s

∗ (xq−1)) and
(xq, s∗ (xq)) we get a new best approximation with (at least) two interior knots less. This contradicts the
assumed minimal number of interior knots.

Case 2: Exactly one data abscissa xq is lying between two interior knots τj < τj′ . Then xq cannot be
a knot. Because otherwise we could replace s∗ between xq−1 and xq by the straight line connection the
function values s∗ (xq−1) in xq−1 and s∗ (xq) in xq and could thus construct a best approximation with less
interior knots than s∗ has. This contradicts the assumption that s∗ has a minimal number of interior knots.
In analogy it can be shown that there ist neither a knot distinct from xq between τj and τj′ . Thus, we have
j′ = j + 1 and xq−1 < τj < xq < τj+1 < xq+1.

We definine
σ(x) := s∗ (xq−1) + (x− xq−1)

s∗ (xq)− s∗ (xq−1)
xq − xq−1

.

Case 2.1: We consider the case s∗ (τj) < σ (τj).

Case 2.1.1: Let the inequality s∗ (xq+1) ≤ σ (xq+1) hold. Then there exists a point of intersection
x ∈ (τj+1, xq+1] of s∗ with the straight line σ. We can replace s∗ on [xq−1, x] by σ and thus receive again a
best approximation s̃ of f with at least one interior knot less than s∗ because τj and τj+1 are not interior
knots for s̃, xq−1 is data knot of s̃ and only x is a new (potentially interior) knot of s̃. This contradicts our
assumption that s∗ has the minimal number of interior knots.

Case 2.1.2: We consider the case s∗ (xq+1) > σ (xq+1). By ϕ we denote the connecting line between(
xq, s

∗(xq)
)

and (τj+1, s
∗(τj+1)

)
.

Case 2.1.2.1: ϕ(xq+1) > s∗(xq+1). Then there is a x ∈
connecting line of the points

[
xq−1, τj

) 
with s∗(x) = ψ(x) where ψ is the(

xq, s∗(xq)
) 

and 
(
xq+1, s∗(xq+1)

)
. Replace s∗ on 

[
x, xq+1

] 
by ψ. Then τj
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xq−1 τj xq τj+1 x xq+1

Figure 10: Illustration of the proof of Theorem 12 (c), case 2.1.1.

and τj+1 cease to be interior knots while x and xq+1 become new knots where xq+1 is a data knot. The
number of interior knots falls by at least one during this modification while the approximation power remains
unchanged - contradicting the assumption on the minimal number of interior knots for the optimal s∗.

xq−1 x τj xq τj+1 xq+1

Figure 11: Illustration of the proof of Theorem 12 (c), case 2.1.2.1.

Case 2.1.2.2: The case ϕ(xq+1) = s∗(xq+1) cannot occur since τj+1 would then not be a proper knot of
s∗.

Case 2.1.2.3: Consider the case ϕ(xq+1) < s∗(xq+1). Let ϑ denote the straight line connecting(
xq−1, s

∗(xq−1)
)

and
(
τj , s

∗(τj)
)
. Then the lines ϑ and ψ have a point of intersection x ∈ (τj , xq). We

replace s∗ on [τj , x] by ϑ and on (x, xq+1) by ψ. By this modification the knot τj is moved to x and the
knot τj+1 to xq+1. This reduces the number of interior knots by one while the approximation power remains
unchanged - contradicting the assumption on the minimal number of interior knots.

xq−1 τj x xq τj+1 xq+1

Figure 12: Illustration of the proof of Theorem 12 (c), case 2.1.2.3.

Case 2.2: The case s∗ (τj) > σ (τj) ist treated in analogy to case 2.1.

Case 2.3: The case s∗ (τj) = σ (τj) cannot occur because τj then would not be a proper knot and could
therefore be omitted.

Case 3: We consider the case that at least two data abscissae lie between two interior knots τi and τj ,
i < j, i.e.: xq−1 < τi < xq < xq+1 < . . . < xq′ < τj < xq′+1 with q < q′. Then the data abscissae xq and
xq′ neighboring to τi and τj cannot be knots. Because otherwise we could replace s∗ on [xq−1, xq] by the 
straight line connecting (xq−1, s∗ (xq−1)) and (xq, s∗ (xq)) and in a similar way on [xq′ , xq′+1]. We would
thus receive a best approximation with less interior knots which contradicts our assumption. Thus there 
are at least two data abscissae which are not knots: xq and xq′ . This proves (c).

To prove (d) we demonstrate that all other cases can be excluded:
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Case 1: There is no data abscissa on or between neighboring knots τj < τj+1, i.e.: xq < τj < τj+1 < xq+1.
Then τj and τj+1 must be interior knots and we can construct a best approximation with less interior knots
then by replacing s∗ on [xq, xq+1] by the straight line connecting

(
xq, s

∗(xq)
)

and
(
xq+1, s

∗(xq+1)
)
. This

contradicts the assumption that s∗ has the minimal number of interior knots.

xq τj τj+1 xq+1

Figure 13: Illustration of the proof of Theorem 12 (d), case 1.

Case 2: There is exactly one data abscissa between τj and τj+1.

Case 2.1: Consider the case xq = τj < τj+1 < xq+1. We move τj+1 to xq+1 and replace s∗ on [xq, xq+1]
by the connecting line between

(
xq, s

∗(xq)
)

and
(
xq+1, s

∗(xq+1)
)
. This diminishes the number of interior

knots. Contradiction!

Case 2.2: The case xq < τj < τj+1 = xq+1 is treated in analogy to case 2.1.

Case 2.3: The case xq−1 < τj < xq < τj+1 < xq+1 cannot occur because of (c).

Thus, the assertion in (d) remains as the only possibility.

Proof of (e): We obviously have: τ0 6= τj 6= τk. As data abscissae neighboring to τj the abscissae xq and
xq+1 cannot be knots according to (b).

Proof of (f): Let τj be an interior knot of s∗. Because of (a) τj ∈ (x1, xµ) holds and thus there exists a
q with

x0 < x1 < . . . < xq < τj < xq+1 < . . . < xµ < xµ+1 .

Because of (b) xq and xq+1 cannot be knots which implies

x0, xq ∈ (−∞, τj) and xq+1, xµ+1 ∈ (τj ,∞) .

To prove (g) let p <∞ hold. Because of (d) at least one data abscissa lies strictly between τj and τj+1.
Let there be exactly one xq with τj < xq < τj+1.

Case 1: Consider the case that τj is the interior and τj+1 the data knot. Then there is at least one
data abscissa to the left of τj . Denote by ϑ the line connecting the points

(
τj , s

∗(τj)
)

and (xq−1, s
∗(xq−1)

)
.

Assume the data point (xq, fq) would not be reproduced exactly by s∗, i.e. s∗(xq) 6= fq. For small ε > 0
let ψ+ be the straight line connecting

(
τj + ε, ϑ(τj + ε)

)
and

(
τj+1, s

∗(τj+1)
)

and ψ− the line connecting(
τj − ε, ϑ(τj − ε)

)
and

(
τj+1, s

∗(τj+1)
)
. Furthermore, we define

s∗+(x) :=


ϑ(x) x, ∈

(
xq−1, τj + ε

]
ψ+(x) x, ∈

(
τj + ε, τj+1

]
s∗(x) , otherwise

and

s∗−(x) :=


ϑ(x) , x ∈

(
xq−1, τj − ε

]
ψ−(x) , x ∈

(
τj − ε, τj+1

]
s∗(x) , otherwise .

Then for sufficiently small ε > 0 and dependent on the position of s∗(xq) (see Fig. 14 and 15) s∗+ or s∗− is
a better approximation to the data than s∗ - a contradiction since s∗ is a best approximation.
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xq−1 τj τj + ε xq τj+1 = xq+1

s∗

s∗+

Figure 14: Illustration of the proof of Theorem 12 (g), case 1.

xq−1 τj − ε τj xq τj+1 = xq+1

s∗−

s∗

Figure 15: Illustration of the proof of Theorem 12 (g), case 1.

So if there ist exactly one xq lying between τj and τj+1, i.e. τj < xq < τj+1, then xq is reproduced by
s∗, i.e. s∗(xq) = fq.

Case 2: In this case τj is the data knot and τj+1 the interior knot. This case is treated in analogy to
case 1.

Thus, we have shown that one of the cases named in (g) occurs.

Proof of (h): Since we are considering the case r = k all knots, in particular all interior knots, are proper
knots, i.e., the first derivatve has a jump discontinuity.

In case r = k (s∗ has k proper knots) (a) to (h) are thus proven.

To complete the proof of Theorem 12 we have to check the case r < k. First we show that s∗ cannot
have (proper) interior knots then. To demonstrate this let us assume τj was an interior knot of s∗ and
xq < τj < xq+1. Replacing s∗ on [xq, xq+1] by the straight line connecting

(
xq, s

∗(xq)
)

and
(
xq+1, s

∗(xq+1)
)

makes xq and xq+1 to (new) knots while τj ceases to be a knot. We thus get a best approximation whith
r + 1 ≤ k knots and with one inner knot less than s∗. This contradicts the assumption of s∗ having a
minimal number of interior knots. All knots τ1, . . . , τr of s∗ are therefore data knots.

Furthermore,
M :=

{
x1, . . . , xµ

}
\
{
τ1, . . . , τr

}
contains at least k− r+ 1 elements since µ ≥ k+ 1. Now supplement the proper knots of s∗ with arbitrary
points from M to k (proper and improper) knots. We claim that for these now k knots t1 < t2 < . . . < tk

properties and assertions (a) to (g) hold. Assertion (a) holds because of the way the additional knots were
chosen. Implications (b), (c) (e), (f), (g) and (h) hold because the assumptions cannot be fulfilled due to
the lack of interior knots. Assertion (d) holds, because alle knots t1, . . . , tk are data knots - the proper and
the improper ones.

This completes the proof of Theorem 12. �
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With regard to the application of the propositions in this paper to the development of numerical methods,
we hold that:

Remark 13. The statements in Lemma 3, Theorem 6 and Theorem 12 (a) to (g) also hold true for the
case

inf
s∈S1

k[a,b]

∥∥F − s(X)
∥∥
p

= 0 .

For Lemma 3 and Theorem 6 this is obvious, for Theorem 12 a review of the proof shows that nowhere
it is assumed or required that the minimal approximation error be (strictly) positive.

Remark 14. As a review of the proof of Theorem 12 shows the assumption µ ≥ k + 1 ≥ 2 is needed only
in case the minimal approximation error can already be realized with less than k knots.

3. Summary and Conclusion

We have proven that there exists a first-degree spline (broken line) best approximating a function f

on a discrete point set and derived additional important properties of at least one best approximation. A
numerical procedure based on the existence proof and the additional properties is presented in [1].

On the question of extending the results from Theorem 12 to higher-degree splines: Ist seems not possible
to transfer the method of proof applied here (of varying a best approximation in subintervalls) to higher-
degree splines, because in that case it would be necessary to preserve not just the continuity of the spline
but also the continuity of the first and possibly higher derivatives during this modification.
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