$\mathbf{K}_{\mathrm{p}, \mathrm{q}}$ graph - Edge Product Number

J.P. Thavamani
Associate Professor, Department of Mathematics, M.E.S. College, Nedumkandam(po), Idukki(dt), Kerala(st)-685553, India
Emil: jpthavamani@gmail.com

Abstract

A graph G is said to be an edge product graph if there exists an edge function $f: E \rightarrow P$ such that the function f and its corresponding edge product function F on V satisfies that $F(v) \in P$ for every $v \in V$ and if $e_{1}, e_{2}, \ldots, e_{p} \in E$ such that $f\left(e_{1}\right), f\left(e_{2}\right) \ldots . f\left(e_{p}\right) \in P$ then the edges $e_{1}, e_{2}, \ldots, e_{p}$ are incident on a vertex. In this paper the edge product number of complete bipartite graph is found. Keywords: edge product function, edge product graph, edge product number of a graph

\section*{1. Introduction}

We begin with simple, finite, connected and undirected graph $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$. For all other terminology and notations, follow Harary[1,2]. Here brief summary of definitions which are used for the present investigation are given. A dynamic survey on graph labeling is regularly updated by Gallian[3] and is published by electronic journal of combinatory.

2. Previous Results

Definition: 2.1

Let G be a graph and P be a set of positive integers with $|E|=|P|$. Then any bijection $f: E \rightarrow P$ is called an edge function of the graph G. Define $\mathrm{F}(\mathrm{v})=\Pi\{\mathrm{f}(\mathrm{e}) / \mathrm{e}$ is incident on v$\}$ on V . Then F is called the edge product function of the edge function f . G is said to be an edge product graph if there exists an edge function $\mathrm{f}: \mathrm{E} \rightarrow \mathrm{P}$ such that f and its corresponding edge product function F on V satisfy the conditions that $F(v) \in P$ for every $v \in V$ and if $e_{1}, e_{2}, \ldots, e_{p} \in E$ such that $f\left(e_{1}\right) \cdot f\left(e_{2}\right)$. $\ldots . f\left(e_{p}\right) \in P$, then $e_{1}, e_{2}, \ldots, e_{p}$ are incident on a vertex.

Definition: 2.2

Let $\operatorname{EPN}(\mathrm{G})$, the edge product number of G , denote the minimum number K_{2} components that must be added to G so that the resulting graph is an edge product graph. For any connected graph G other than $K_{2}, \operatorname{EPN}(G) \geq 1$. Let $\operatorname{EPN}(G)=r$. An edge function $f: E \rightarrow P$ and its corresponding edge product function F which make GUrK_{2} an edge product graph are respectively called an optimal edge function and an optimal edge product function of G .

Definition:2.3

Let $\mathrm{K}_{(\mathrm{p}, \mathrm{q})}$ be a complete bipartite graph with $\mathrm{p}+\mathrm{q}$ vertices and pq edges. If $\mathrm{G}=\mathrm{K}_{(\mathrm{p}, \mathrm{q})} \mathrm{UrK}_{2}$ is a
graph with $\operatorname{EPN}\left(K_{p, q}\right)=r$ where $r \geq 1$ and $2 \leq p \leq q$. Let the vertex set and the edge set of $K_{(p, q)}$ be $\mathrm{V}_{1}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{p}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{q}}\right\}$ and $\mathrm{E}_{1}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{p}\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{q}\right\}$ respectively.
The mapping $\mathrm{f}: \mathrm{E} \rightarrow \mathrm{P}$ is the optimal edge function and F is its corresponding optimal edge product function of f . The optimal edge function $\mathrm{f}: \mathrm{E} \rightarrow \mathrm{P}$ can be restricted to the edge set E_{1} and is represented by a matrix $\left(a_{i, j}\right)$ of order $(p \times q)$, where $a_{i, j}=f\left(u_{i} v_{j}\right)$ for $1 \leq i \leq p$ and $1 \leq j \leq q$. Then the matrix $\left(a_{i, j}\right)$ is known as edge function matrix of the complete bipartite graph $\mathrm{K}_{(\mathrm{p}, \mathrm{q})}$. The row product and the column product of the optimal edge product function F is defined by
$\mathrm{F}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}^{\text {th }}$ row product for $1 \leq \mathrm{i} \leq \mathrm{p}$ and
$\mathrm{F}\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{j}^{\text {th }}$ column product for $1 \leq \mathrm{j} \leq \mathrm{q}$
Since u_{i} and v_{j} are the vertices for $1 \leq i \leq p$ and for $1 \leq j \leq q$. The $i^{\text {th }}$ row elements are the labeling of the edges incident on u_{i} and the $\mathrm{j}^{\text {th }}$ column elements are the labeling of the edges incident on v_{j}.

Definition: 2.4

Let $U_{(p, q)}$ be a matrix of order $\mathrm{p} \times \mathrm{q}$. Then the two power unit product matrix $\mathrm{U}_{(\mathrm{p}, \mathrm{q})}$ is constructed by
$u_{(i, j)}=2^{(i-1)+(j-1)(p-1)}$ for $1 \leq i \leq(p-1)$ and for $1 \leq j \leq(q-1)$
$\mathrm{u}_{(\mathrm{p}, \mathrm{j})}=\left(\frac{1}{2^{(\mathrm{j}-1)(\mathrm{p}-1)} \Pi\left\{2^{(\mathrm{k}-1)}: 1 \leq \mathrm{k} \leq(\mathrm{p}-1)\right.}\right)$ for $\left.1 \leq \mathrm{j} \leq(\mathrm{q}-1)\right]$
$u_{(i, q)}=\left(\frac{1}{2^{(i-1)} \Pi\left\{2^{(k-1)(p-1)}: 1 \leq \mathrm{k} \leq(q-1)\right.}\right)$ for $\left.1 \leq i \leq(p-1)\right]$
$\mathrm{u}_{(\mathrm{p}, \mathrm{q})}=\Pi\left\{2^{\mathrm{k}-1}: 1 \leq \mathrm{k} \leq(\mathrm{p}-1)(\mathrm{q}-1)\right\}$

3. Main Result

Lemma: 3.1

If $U_{(p, q)}$ is a two power unit product matrix of order $(p \times q)$. Then
(i) The product of row elements and column elements of the matrix $U_{(p, q)}$ are equal to one.
(ii) The product of a collection of distinct elements of $U_{(p, q)}$ are one then they form a row or a column.
Theorem: 3.2
If $K_{(p, q)}$ is a complete bipartite graph then $\operatorname{EPN}\left(K_{p, q}\right) \geq 2$ for $2 \leq p<q$.
Proof:
Assume that for a complete bipartite graph $K_{(p, q)}, \operatorname{EPN}\left(K_{p, q}\right)=1$ for some $2 \leq p<q$. Consider a graph $G=K_{(p, q)} \cup K_{2}$ is an edge product graph for $2 \leq p<q$. Let $V=\left\{u_{1}, u_{2}, \ldots, u_{p}, v_{1}, v_{2}, \ldots, v_{q}\right.$, $\left.\mathrm{w}_{1}, \mathrm{w}_{2}\right\}$ be the vertex set and $\mathrm{E}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{p}\right.$ and $\left.1 \leq j \leq \mathrm{q}\right\} \cup\left\{\mathrm{w}_{1} \mathrm{w}_{2}\right\}$ be the edge set of G . The mapping $\mathrm{f}: \mathrm{E} \rightarrow \mathrm{P}$ is an optimal edge function and the function F is its corresponding optimal edge product function. Then F is an outer edge product function if $\mathrm{K}_{(\mathrm{p}, \mathrm{q})}$ has no pendent vertex and is triangle free. We have $F\left(u_{i}\right)=F\left(v_{j}\right)=f\left(w_{1} W_{2}=x(\right.$ say $)$, for $1 \leq i \leq p$ and $1 \leq j \leq q$.
Hence $\Pi\left\{\Pi\left\{f\left(u_{i} v_{j}\right): 1 \leq i \leq p: 1 \leq j \leq q\right\}=\Pi\left\{\Pi\left\{f\left(u_{i} v_{j}\right): 1 \leq j \leq q\right\}: 1 \leq i \leq p\right\}\right.$.
Therefore, $\Pi\left\{\mathrm{F}\left(\mathrm{u}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{p}\right\}=\Pi\left\{\mathrm{F}\left(\mathrm{v}_{\mathrm{j}}\right): 1 \leq \mathrm{j} \leq \mathrm{q}\right\}$.

That is, $\mathrm{x}^{\mathrm{q}}=\mathrm{x}^{\mathrm{p}} \Rightarrow \mathrm{q}=\mathrm{p}$ which is a contradiction to our hypothesis that $\mathrm{q}>\mathrm{p}$. Hence we have $\operatorname{EPN}\left(K_{p, q}\right) \geq 2$ for $2 \leq p<q$.

Example:

If $p=2, q=4$ and then take $x=2^{5}$ we have the edge function matrix A of order (2×4) is:
$\left[\begin{array}{llll}2^{12} & 2^{13} & 2^{14} & 2^{5} \\ 2^{10} & 2^{9} & 2^{8} & 2^{17}\end{array}\right]$

The graph $\mathrm{K}_{(2,4)} \mathrm{U} 2 \mathrm{~K}_{2}$ is an edge product graph and $\operatorname{EPN}\left(\mathrm{K}_{2,4}\right)=2$ is illustrated in the following figure.

Figure 1
Theorem: 3.3
If $\mathrm{K}_{(\mathrm{p}, \mathrm{q})}$ is a complete bipartite graph for $2 \leq \mathrm{p}<\mathrm{q}$. Let $\mathrm{K}_{(\mathrm{p}, \mathrm{q})} \cup 2 \mathrm{~K}_{2}$ be an edge product graph and $\operatorname{EPN}\left(\mathrm{K}_{(\mathrm{p}, \mathrm{q})}\right)=2$. Let $\mathrm{f}: \mathrm{E} \rightarrow \mathrm{P}$ be an optimal edge function and the function F be its corresponding optimal edge product function of the graph G and the range of $\mathrm{F}=\{\mathrm{x}, \mathrm{y}\}$ then [g.c.d of $\{\mathrm{x}, \mathrm{y}\}$] $\notin\{x, y\}$

Proof:

Consider a graph $K_{(p, q)} \cup 2 K_{2}$ is an edge product graph for $2 \leq p<q$ with vertex set $V=\left\{u_{1}, u_{2}, \ldots\right.$, $\left.\mathrm{u}_{\mathrm{p}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{q}}, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right\}$ and edge set $\mathrm{E}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{p}\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{q}\right\} \cup\left\{\mathrm{w}_{1} \mathrm{w}_{2}, \mathrm{w}_{3} \mathrm{w}_{4}\right\}$.
$\operatorname{Let} F\left(u_{i}\right)=F\left(v_{j}\right)=\left\{\begin{array}{l}x \text { for } 1 \leq i \leq p_{1} \text { and } 1 \leq j \leq q_{1} \\ y \text { for }\left(p_{1}+1\right) \leq i \leq p \text { and }\left(q_{1}+1\right) \leq j \leq q\end{array}\right.$
If $\mathrm{p}_{2}=\left(\mathrm{p} / \mathrm{p}_{1}\right)$ and $\mathrm{q}_{2}=\left(\mathrm{q} / \mathrm{q}_{1}\right)$ then $\Pi\left\{\mathrm{F}\left(\mathrm{u}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{p}\right\}=\Pi\left\{\mathrm{F}\left(\mathrm{v}_{\mathrm{j}}\right): 1 \leq \mathrm{i} \leq \mathrm{q}\right\}$
Therefore $\mathrm{x}^{\mathrm{p}_{1}} \mathrm{y}^{\mathrm{p}_{2}}=\mathrm{x}^{\mathrm{q}_{1}} \mathrm{y}^{\mathrm{q}_{2}}$. If $\mathrm{p}_{1}=\mathrm{q}_{1}$ then $\mathrm{q}_{2}=\mathrm{p}_{2}$ and $\mathrm{p}=\mathrm{p}_{1} \mathrm{p}_{2}=\mathrm{q}_{1} \mathrm{q}_{2}=\mathrm{q}$ which is a contradiction to our hypothesis that $\mathrm{q}>\mathrm{p}$.
If $p_{1}>q_{1}$ then clearly $q_{2}>p_{2}$. Consider [g.c.d of $\left.\{x, y\}\right]=y$. Then y is a divisor of x.
Let $\mathrm{x}=\mathrm{y}^{\mathrm{p}}$, then $\mathrm{y}^{\mathrm{p}(\mathrm{p} 1-\mathrm{q} 1)}=\mathrm{y}^{\left(\mathrm{q}^{2}-\mathrm{p} 2\right)} \Rightarrow \mathrm{p}=\left[\left(\mathrm{q}_{2} / \mathrm{p}_{2}\right) /\left(\mathrm{p}_{1} / \mathrm{q}_{1}\right)\right] \leq\left(\mathrm{q}_{2} / \mathrm{p}_{2}\right) \leq \mathrm{q}_{2}$.
In one partition there are at least p vertices whose image under the function F which are equal to y, taking the entire edges incident on them we get that their total labeling is equal to x. But they are all not incident on a vertex.
This is a contradiction that the graph G is an edge product graph. Hence y is not a divisor of x. Similarly x is not a divisor of y.
Therefore [g.c.d of $\{x, y\}$] is neither x nor y. Thus we obtain that $[$ g.c.d of $\{x, y\}] \notin\{x, y\}$.

References

[1] F. Harary, Graph Theory, Addison - Wesley, Reading, 1969
[2] F. Harary, Sum graphs over all the integers, Discrete Math., 124 (1994) 99-105
[3] A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16 (2000) 39-48

