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Abstract:  The purpose of this paper is to introduce the concepts of (1, 2)*-Mmπ- T0 space, 

(1, 2)*- Mmπ - T1 space and (1, 2)*- Mmπ - T2 space in a biminimal spaces. We study some of 

the characterizations and properties of these separation axioms. Further we discuss (1, 2)*- 

Mmπ -R0 and (1, 2)*- Mmπ -R1 spaces in biminimal spaces. The implications of these axioms 

among themselves are also investigated 
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1. INTRODUCTION 

The concept of minimal structure (briefly m-structure) was introduced by V. Popa and 

T. Noiri [12] in 2000.  Also they introduced the notion of mX-open set and mX-closed set and 

characterize those sets using mX-closure and mX- interior operators respectively. Further they 

introduced M-continuous functions and studied some of its basic properties. The separation 

axioms R0 and R1 were introduced and studied by N. A. Shanin [15] and C. T. Yang [16]. In 

1963, they were rediscovered by A. S. Davis [4]. In literature, [1, 2, 3, 4, 6, 7, 9, 10, 11, 12] 

many authors introduced various separation axioms. Recently, Ravi et al [13, 14] studied τ1, 2-

open sets in biminimal spaces. In this paper we introduce and study some separation axioms 

in a biminimal structure space. 
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2. PRELIMINARIES 

We recall the following definitions which are useful in the sequel. 

Definition: 2. 1. [5] Let X be a non-empty set and þ(X) the power set of X. A sub family mx 

of þ(X) is called a minimal structure (briefly m-structure) on X if φ mx and X mx. 

Definition: 2. 2. [13] A set X together with two minimal structures mx
1
 and mx

2
  is called a 

biminimal space and is denoted by (X, mx
1
 , mx

2 
). 

Throughout this paper, (X,  mx
1
, mx

2 
) (or X) denote biminimal structure space. 

Definition: 2. 3. [13]  Let S be a subset of X. Then S is said to be mx
(1, 2)*

-open if S=AB  

where Amx
1
and Bmx

2
.  The complement of  mx

(1, 2)*
-open set is called mx

(1, 2)*
-closed set. 

The family of all mx
(1, 2)*

-open (resp. mx
(1, 2)*

-closed) subsets of X  is denoted by  

mx
(1, 2)*

-O(X) (resp. mx
(1, 2)*

-C(X)). 

Definition:  2. 4.  [13] Let S be a subset of  X. Then  

1. the mx 
(1, 2)*

-interior of S denoted by mx
(1, 2)*

-int(S) is defined by {G:  GS and  G is    

mx
(1, 2)*

-open}. 

2. the mx
(1, 2)*

-closure of S denoted by mx
(1, 2)*

-cl(S) is defined by {F:  SF  and  F is   

mx
(1, 2)*

-closed}.  

Definition:   2. 5. [14] A subset A of  X  is called regular -mx
 (1, 2)*

-open if A= mx
(1, 2)*

-int  

(mx
(1, 2)*

-cl (A)). 

Definition  2. 6. [8] The finite union of  regular -mx
 (1, 2)*

-open set in X is called mx
 (1, 2)*

-π-open set. 

Definition  2. 7.   [8] A subset A of X is said to be m
(1, 2)*

-πg-closed set if  m
)*2,1(

x -cl (A)  G 

whenever   AG and G is m
 )*2,1(

x -π-open set. The complement of an m
(1, 2)*

-πg-closed set is called 

m
(1, 2)*

-πg-open set. 

The family of all m
(1, 2)*

-πg-open (resp. m
(1, 2)*

-πg-closed) subsets of X is denoted by m
(1, 2)*

-

πg-O(X) (resp. m
(1, 2)*

-πg-C(X)). 

 Definition  2. 8. [8] A subset A of X is said to be (1, 2)*- Mmπ-closed set  if  m
)*2,1(

x -cl (A)  G 

whenever   AG and G is m
(1, 2)*

-πg-open set. The complement of an (1, 2)*- Mmπ-closed set is 

called a (1, 2)*- Mmπ-open set in X.  

The family of all (1, 2)*- Mmπ-open (resp. (1, 2)*- Mmπ-closed) subsets of X  is denoted by (1, 

2)*- Mmπ-O(X) (resp. (1, 2)*- Mmπ-C(X)). 
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3. (1, 2)*- Mmπ- SEPARATION AXIOMS: 

Definition 3. 1. The union of all (1, 2)*- Mmπ-open sets in a biminimal space X, which are 

contained in a subset A of X  is called the (1, 2)*- Mmπ-interior of A and is denoted by  

(1, 2)*- Mmπ-int (A). 

Definition 3. 2. The (1, 2)*- Mmπ-closure of A of X  is the intersection of all (1, 2)*- Mmπ-

closed sets that contains A and is denoted by (1, 2)*- Mmπ-cl (A). 

Definition 3. 3.  A biminimal space X is called (1, 2)*- Mmπ -T0 (resp. m
(1, 2)*

- πg -T0) space 

if for any two distinct points x, y in X, there exists a (1, 2)*- Mmπ – open (m
(1, 2)*

- πg –open) 

set containing only one of x and y but not the other. 

Clearly, every (1, 2)*- Mmπ -T0 space is a m 
(1, 2)*

- πg -T0 space, since every (1, 2)*- Mmπ –

open set is a m 
(1, 2)*

- πg –open set. The converse is not true in general. 

Example  3. 4.  Let X = {a, b, c}, τ1 = {φ, X, {b}, {a, b}} and  τ2 = {φ, X, {b, c}}. Then  

m
 (1, 2)*

-πgO(X) = {φ, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}} and (1, 2)*- Mmπ-O(X) = {φ, X, 

{b}, {a, b}, {b, c}}. Therefore, X is m
 (1, 2)*

- πg -T0, but not (1, 2)*- Mmπ -T0 space. 

Theorem 3. 5.  If (1, 2)*- Mmπ -closures of distinct points are distinct in any biminimal space 

X, then it is (1, 2)*- Mmπ -T0. 

Proof. Let x, yX,  x ≠ y. By the hypothesis, (1, 2)*- Mmπ –cl ({x}) ≠ (1, 2)*- Mmπ –cl ({y}). 

Then, there exists a point z Є X such that z belongs to exactly one of the two sets, say (1, 2)*- 

Mmπ –cl ({y}) but not to (1, 2)*- Mmπ –cl ({x}). If y Є (1, 2)*- Mmπ –cl ({x}), then (1, 2)*- Mmπ –

cl ({y})  (1, 2)*- Mmπ –cl ({x}) which implies z Є (1, 2)*- Mmπ –cl ({x}), a contradiction. So y 

X - (1, 2)*- Mmπ –cl ({x}),  a (1, 2)*- Mmπ –open set which does not contain x. This shows that 

X is (1, 2)*- Mmπ –T0. 

Theorem 3. 6.  In any biminimal space X, (1, 2)*- Mmπ -closures of distinct points are distinct. 

Proof. Let x, yX,  x ≠ y.  Case (a): {x} is mx
(1, 2)*

 -closed. Then {x} is (1, 2)*- Mmπ -closed.  

Now y ≠ x implies y{x} = (1, 2)*- Mmπ -cl ({x}). Hence (1, 2)*- Mmπ –cl ({y}) ≠ (1, 2)*- Mmπ –

cl ({x}). Case (b): {x} is not mx
(1, 2)*

 -closed. Then X- {x} is not mx
(1, 2)*

 - open and therefore, X is 

only mx
(1, 2)*

 -open set containing X – {x}.  Hence X – {x} is (1, 2)*- Mmπ –closed set.  Now y   

X- {x} implies (1, 2)*- Mmπ -cl ({y})  X –{x}. Hence x  (1, 2)*- Mmπ –cl ({y}) and (1, 2)*- 

Mmπ –cl ({y}) ≠ (1, 2)*- Mmπ –cl ({x}).  

Theorem 3. 7. Every biminimal space is (1, 2)*- Mmπ -T0. 

Proof. Follows from Theorem 3. 5. and Theorem 3. 6. 
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Definition 3. 8.  A biminimal space X is called a (1, 2)*- Mmπ -C0 space if for any two 

distinct points x, y in X, there exists a (1, 2)*- Mmπ -open set such that (1, 2)*- Mmπ –cl (G) 

contains one of x and y, but not the other. 

Theorem 3. 9. If a biminimal space X is (1, 2)*- Mmπ - C0  then it is (1, 2)*- Mmπ –T0. 

Proof. Let X be (1, 2)*- Mmπ - C0  and x, y Є X with x ≠ y. Then there exists a (1, 2)*- Mmπ –open 

set G of X such that x (1, 2)*- Mmπ –cl (G) and y(1, 2)*- Mmπ –cl(G). Since G is (1, 2)*- Mmπ 

– open, (1, 2)*- Mmπ –cl (G) is also (1, 2)*- Mmπ –open. Moreover x (1, 2)*- Mmπ –cl (G) and y 

(1, 2)*- Mmπ –cl (G). Hence X is (1, 2)*- Mmπ -T0. 

Definition 3. 10.  A biminimal space X is said to be (1, 2)*- Mmπ -T1 if  for any two distinct 

points x, y in X, there exists a pair of (1, 2)*- Mmπ –open sets, one containing x but not y and the 

other containing y but not x. 

Definition 3. 11.  A biminimal space X is said to be (1, 2)*- Mmπ -C1 if for any two distinct points 

x, y in X, there exists U, V Є (1, 2)*- Mmπ –O(X), such that (1, 2)*- Mmπ –cl (U) containing x but 

not y and (1, 2)*- Mmπ –cl (V) containing y but not x. 

Remark 3. 12.   

1. Every (1, 2)*- Mmπ -T1 space is (1, 2)*- Mmπ -T0. 

2. Every (1, 2)*- Mmπ -C1 space is (1, 2)*- Mmπ –T1. 

3. Every (1, 2)*- Mmπ -C1 space is (1, 2)*- Mmπ –C0. 

But the converses are not true in general as illustrated in the next example. 

Example 3. 13.   

1. Let X = {a, b, c}, τ1 = {φ, X, {b}} and  τ2 = {φ, X, {c}}. Then (1, 2)*- Mmπ-O(X) = {φ, X, {b}, 

{c}, {b, c}}. It is clear that, X is (1, 2)*- Mmπ -T0, but not (1, 2)*- Mmπ –T1 space. 

2. Let X = {a, b, c}, τ1 = {φ, X, {a}} and  τ2 = {φ, X, {b}}. Then (1, 2)*- Mmπ-O(X) = {φ, X, 

{a}, {b}, {a, b}}. Here X is (1, 2)*- Mmπ -T0, but not (1, 2)*- Mmπ –C0 space. 

3. Let X = {a, b, c, d}, τ1 = {φ, X, {a}, {b}} and  τ2 = {φ, X, {a, b, d}}. Then (1, 2)*- Mmπ-

O(X) = {φ, X, {a}, {b}, {a, b}, {a, b, d}}. Then, X is (1, 2)*- Mmπ –C0, but not (1, 2)*- Mmπ 

–C1 space. 

Theorem 3. 14. In a biminimal space X, the following statements are equivalent. 

1. X is (1, 2)*- Mmπ -T1. 

2. Each one point set is (1, 2)*- Mmπ -closed set in X. 

Proof. (1) => (2). Let X be (1, 2)*- Mmπ -T1  and x X. Suppose (1, 2)*- Mmπ –cl ({x}) ≠ {x}. 

Then we can find an element y(1, 2)*- Mmπ –cl({x}) with y ≠ x .  Since X is (1, 2)*- Mmπ –T1, 

there exist (1, 2)*- Mmπ –open sets U and V such that x U, yU and y Є V, xV. Now x   
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V
C
  and V

C
 is (1, 2)*- Mmπ –closed set. Therefore, (1, 2)*- Mmπ –cl ({x})   V

C
 which implies y 

V
C
, a contraction. Hence, (1, 2)*- Mmπ –cl ({x}) = {x} or {x} is (1, 2)*- Mmπ –closed. 

(2) => (1). Let x, yX and x ≠ y. Then {x} and {y} are (1, 2)*- Mmπ –closed. Therefore, U = 

({y})
 C 

 and V = ({x})
 C 

 are (1, 2)*- Mmπ – open and x U, y U and y V, x V. Hence 

is (1, 2)*- Mmπ -T1. 

Definition 3. 15. A biminimal space X is called a (1, 2)*- Mmπ -T2 space if for any two 

distinct points x, y in X, there exists a pair of disjoint (1, 2)*- Mmπ –open sets U and V such 

that x U and y V and U ∩ V = φ. 

Definition: 3. 16 A function f: X→Y is called (1, 2)*-Mmπ-irresolute if the inverse image of  

every (1, 2)*-Mmπ-closed set in Y is (1, 2)*-Mmπ-closed set in X. 

Theorem  3. 17. If f: X → Y is an injective, (1, 2)*- Mmπ -irresolute function and Y is 

 (1, 2)*- Mmπ -T2 then X is (1, 2)*- Mmπ -T2. 

Proof. Let x, y X and x ≠ y.  Since f is injective, f(x) ≠ f(y) in Y and there exist disjoint (1, 2)*- 

Mmπ -open sets U, V such that f(x) U and f(y) V. Let G=f 
-1

(U) and H=f 
-1

(V). Then xG, y

H and G, H (1, 2)*- Mmπ -O(X). Also G ∩ H = f 
-1

(U) ∩ f 
-1

(V) = f 
-1

(U ∩V) = φ. Thus X is 

(1, 2)*- Mmπ -T2. 

Theorem 3. 18. If f: X → Y is an injective, (1, 2)*- Mmπ -irresolute function and Y is 

 (1, 2)*- Mmπ –T1 then X is (1, 2)*- Mmπ –T1. 

Proof. The proof is similar to the above theorem. 

Remark 3. 19.  Every (1, 2)*- Mmπ –T2 space is (1, 2)*- Mmπ –T1.  

Definition 3. 20.  A biminimal space X is called a (1, 2)*- Mmπ –R0 space if for each (1, 2)*- 

Mmπ –open set G, x G, implies (1, 2)*- Mmπ –cl ({x})  G. 

Theorem 3. 21 : For any biminimal space X, the following are equivalent: 

1. X is (1, 2)*- Mmπ-R0. 

2. F (1, 2)*- Mmπ-C(X) and x F => F  U and x U for some U (1, 2)*- Mmπ-

O(X). 

3. F (1, 2)*- Mmπ-C(X) and x F => F ∩ (1, 2)*- Mmπ-cl ({x}) = φ. 

4. For any two distinct points x, y of X, either (1, 2)*- Mmπ-cl ({x}) = (1, 2)*- Mmπ-cl 

({y}) or (1, 2)*- Mmπ-cl ({x}) ∩ (1, 2)*- Mmπ-cl ({y}) = φ. 

Proof. 1 => 2: F (1, 2)*- Mmπ-C(X)  and x F => x X\ F   (1, 2)*- Mmπ-O(X) =>  

(1, 2)*- Mmπ-cl ({x})   X \ F (by (1)). Put U = X \ (1, 2)*- Mmπ-cl ({x}). Then x U (1, 

2)*- Mmπ-O(X) and F  U. 
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2=> 3: F (1, 2)*- Mmπ-C(X) and x F => there exists U (1, 2)*- Mmπ-O(X) such that  x

U and F  U  (by (2)) => U ∩ (1, 2)*- Mmπ-cl ({x}) = φ => F ∩ (1, 2)*- Mmπ-cl ({x}) = φ. 

3=> 4: Suppose that for any two distinct points x, y of X, (1, 2)*- Mmπ-cl ({x}) ≠ (1, 2)*- 

Mmπ-cl ({y}). Then suppose without any loss of generality that there exists some z (1, 2)*- 

Mmπ-cl ({x})  such that z (1, 2)*- Mmπ-cl ({y}). Thus there exists V(1, 2)*- Mmπ-O(X) 

such that z V and yV but xV. Thus x(1, 2)*- Mmπ-cl ({y}). Hence by (3),  (1, 2)*- 

Mmπ-cl ({x}) ∩ (1, 2)*- Mmπ-cl ({y}) = φ. 

4=> 1 : Let U(1, 2)*- Mmπ-O(X) and x U. Then for each y U, x (1, 2)*- Mmπ-cl 

({y}). Thus (1, 2)*- Mmπ-cl ({x}) ≠ (1, 2)*- Mmπ-cl ({y}). Hence by (4), (1, 2)*- Mmπ-cl ({x}) 

∩ (1, 2)*- Mmπ-cl ({y}) = φ, for each y X \ U. So (1, 2)*- Mmπ-cl ({x}) ∩ [ U {(1, 2)*- 

Mmπ-cl ({y}) : y X \ U}] = φ ………….(i). 

Now, U(1, 2)*- Mmπ-O(X) and y X \ U => {y}  (1, 2)*- Mmπ-cl ({y})  (1, 2)*- Mmπ-

cl (X \ U) = X \ U.Thus X \ U = U {(1, 2)*- Mmπ-cl ({y}) : y X \ U}. Hence from (i), (1, 

2)*- Mmπ-cl ({x}) ∩( X \ U) = φ => (1, 2)*- Mmπ-cl ({x})  U, showing that X is  

(1, 2)*- Mmπ-R0.  

Definition 3. 22.  A biminimal space X is called a (1, 2)*- Mmπ –R1 space if for any two 

distinct points x, y in X, with (1, 2)*- Mmπ -cl ({x}) ≠ (1, 2)*- Mmπ –cl ({y}), there exists pair 

of disjoint (1, 2)*- Mmπ –open sets U and V such that (1, 2)*- Mmπ –cl ({x})  U  and  (1, 

2)*- Mmπ –cl ({y})  V. 

Theorem 3. 23.  Every (1, 2)*- Mmπ –R1 biminimal space is (1, 2)*- Mmπ –R0. 

Proof. Let X be (1, 2)*- Mmπ –R1 and let G be a (1, 2)*- Mmπ –open set containing x. If  (1, 2)*- Mmπ 

–cl ({x})  G then there exists an element y Є (1, 2)*- Mmπ –cl ({x}) ∩ G
C
. Since G

C
 is (1, 2)*- Mmπ 

–closed, (1, 2)*- Mmπ –cl ({y})   G
C
. Now (1, 2)*- Mmπ –cl ({x}) ≠ (1, 2)*- Mmπ –cl ({y}) and X is 

(1, 2)*- Mmπ –R1. Hence there exists disjoint (1, 2)*- Mmπ –open sets containing (1, 2)*- Mmπ –cl 

({x}) and (1, 2)*- Mmπ –cl ({y}) respectively. This is not possible, since y Є (1, 2)*- Mmπ –cl ({x}) 

∩(1, 2)*- Mmπ –cl ({y}). 

Theorem 3. 24.  Let X be a biminimal space. Then X is (1, 2)*- Mmπ -R0 if and only if for 

every (1, 2)*- Mmπ -closed set K and x K, there exists a (1, 2)*- Mmπ -open set S such that 

K  S and x S. 

Proof.  Necessity. Let X be a (1, 2)*- Mmπ -R0 space and K be a (1, 2)*- Mmπ -closed subset 

such that  x K. We have X \ K is (1, 2)*- Mmπ -open and x X \ K. Since X is (1, 2)*- Mmπ 
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-R0, then (1, 2)*- Mmπ -cl ({x})  X \ K. We obtain K  X \ (1, 2)*- Mmπ -cl ({x}). Take S 

= X \ (1, 2)*- Mmπ -cl ({x}). Thus, S is a (1, 2)*- Mmπ -open set such that K  S and x S. 

Sufficiency. Let S be a (1, 2)*- Mmπ -open set and x U. Then X \ S is a (1, 2)*- Mmπ -closed 

set and x X \ S. Then there exists a (1, 2)*- Mmπ -open subset U such that X \ S  U and 

xU. We obtain X \ U  S and x X \ U. Since X \ U is a (1, 2)*- Mmπ -closed set, then 

(1, 2)*- Mmπ -cl ({x}) X \ U  S. Hence, X is a (1, 2)*- Mmπ -R0 space. 

Theorem  3. 25. Let X be a biminimal space. Then X is (1, 2)*- Mmπ –T1 if and only if it is a (1, 2)*- 

Mmπ – T0  and (1, 2)*- Mmπ – R0. 

Proof. Let X be a (1, 2)*- Mmπ – T1 space. By the definition of (1, 2)*- Mmπ – T1 space, it is a (1, 2)*- 

Mmπ – T0  and (1, 2)*- Mmπ – R0  space. 

Conversely, let X be a (1, 2)*- Mmπ – T0 space and (1, 2)*- Mmπ – R0 space. Let x, y be any two 

distinct points of X. Since X is (1, 2)*- Mmπ – T0, then there exists a (1, 2)*- Mmπ – open set U such 

that x U and y U or there exists a (1, 2)*- Mmπ –open set V such that y V and x V. Let x 

U and  y U. Since X is (1, 2)*- Mmπ – R0, then (1, 2)*- Mmπ –cl ({x})  U. We have yU and 

then y (1, 2)*- Mmπ –cl ({x}). We obtain y X \ (1, 2)*- Mmπ – cl ({x}). Take S = X \ (1, 2)*- Mmπ 

–cl ({x}). Thus, U and S are (1, 2)*- Mmπ –open sets containing x and y, respectively, such that y 

U and x S. Hence, X is (1, 2)*- Mmπ – T1. 

Theorem  3. 26. Let X be a biminimal space. Then X is a (1, 2)*- Mmπ -R0 space if and only if for 

any x and y in X, (1, 2)*- Mmπ –cl({x}) ≠ (1, 2)*- Mmπ –cl({y}) implies (1, 2)*- Mmπ –cl({x}) ∩ (1, 

2)*- Mmπ –cl({y}) = φ. 

Proof. Let X be (1, 2)*- Mmπ -R0 and x, y X such that (1, 2)*- Mmπ –cl ({x}) ≠ (1, 2)*- Mmπ –cl 

({y}). Then, there exist a k (1, 2)*- Mmπ –cl ({x}) such that k (1, 2)*- Mmπ –cl ({y}) (or k (1, 

2)*- Mmπ –cl ({y}) such that k (1, 2)*- Mmπ –cl ({x}) and then there exists  V   (1, 2)*- Mmπ –

O(X) such that y V and k V and hence x V. Thus, x (1, 2)*- Mmπ –cl ({y}) and x X \ (1, 

2)*- Mmπ –cl ({y}) (1, 2)*- Mmπ –O(X). We have (1, 2)*- Mmπ –cl ({x})   X \ (1, 2)*- Mmπ –cl 

({y}) and (1, 2)*- Mmπ –cl ({x}) ∩ (1, 2)*- Mmπ –cl ({y}) = φ. 

Conversely, Let V(1, 2)*- Mmπ –O(X) and x V. Let y  V. We have y X \ V. Then x ≠ y and 

x (1, 2)*- Mmπ –cl({y}). We obtain (1, 2)*- Mmπ –cl({x}) ≠ (1, 2)*- Mmπ –cl({y}) and then (1, 2)*- 

Mmπ –cl({x}) ∩ (1, 2)*- Mmπ –cl({y})  = φ. Thus, y (1, 2)*- Mmπ –cl({x}) and then (1, 2)*- Mmπ –

cl({x}) V. We obtain that X is a (1, 2)*- Mmπ – R0 space. 

Theorem  3. 27. Let X be a biminimal space. Then the following properties 

are equivalent: 

1. X is a (1, 2)*- Mmπ -R0 space. 
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2. x (1, 2)*- Mmπ -cl ({y}) if and only if y (1, 2)*- Mmπ -cl ({x}) for any points x and y in X. 

Proof. 1 =>2. Let X be (1, 2)*- Mmπ -R0. Let x (1, 2)*- Mmπ -cl ({y}) and S be any (1, 2)*- 

Mmπ –open set such that y S. By (1), x S. Hence, every (1, 2)*- Mmπ -open set which 

contains y contains x and then y (1, 2)*- Mmπ -cl ({x}). 

2 => 1. Let U be a (1, 2)*- Mmπ -open set and x U. If y U, then x (1, 2)*- Mmπ -cl ({y}) 

and hence y (1, 2)*- Mmπ -cl ({x}). We have (1, 2)*- Mmπ -cl ({x}}  U. Thus, X is (1, 2)*- Mmπ -R0. 

Theorem   3. 28. The following are equivalent in a biminimal space X. 

1. X  is (1, 2)*- Mmπ -T2. 

2. X  is (1, 2)*- Mmπ –R1 and (1, 2)*- Mmπ –T1. 

3. X  is (1, 2)*- Mmπ –R1  and (1, 2)*- Mmπ –T0. 

Proof. 1=> 2: X is (1, 2)*- Mmπ –T2  implies X is (1, 2)*- Mmπ –T1 and therefore by Theorem 

3. 11,  every singleton set in X is (1, 2)*- Mmπ –closed. Let x, y X and x ≠ y. Since X is (1, 

2)*- Mmπ -T2, there exist two disjoint (1, 2)*- Mmπ –open sets U and V containing x and y 

respectively. Since {x} and {y} are (1, 2)*- Mmπ-closed, X is (1, 2)*- Mmπ –R1. 

2 => 3: This is obvious, since X is (1, 2)*- Mmπ –T1 implies X is (1, 2)*- Mmπ –T0. 

3 => 1: Let x, y X and x ≠ y.  

Case (a). (1, 2)*- Mmπ –cl ({x}) ≠ (1, 2)*- Mmπ –cl ({y}). Since X is (1, 2)*- Mmπ –R1, there 

exist two disjoint (1, 2)*- Mmπ –open sets U and V such that U  (1, 2)*- Mmπ –cl ({x}) and  

V  (1, 2)*- Mmπ –cl ({y}). Then x U and y V. 

Case (b). (1, 2)*- Mmπ –cl ({x}) = (1, 2)*- Mmπ –cl ({y}). Since x ≠ y  and X is (1, 2)*- Mmπ –

T0, there exists a (1, 2)*- Mmπ –open sets U containing x but not y. Then y U
c
, a (1, 2)*- 

Mmπ –closed set. This implies (1, 2)*- Mmπ –cl ({y})  U
 c
  and  therefore (1, 2)*- Mmπ –cl 

({x})  U
 c
  or x U

c
 , which is a contradiction. Hence case (b) is not possible. 

Theorem   3. 29. Let X be any biminimal space. Then the following are equivalent. 

1. X  is (1, 2)*- Mmπ –R1 space. 

2. For any x, y X, one of the following holds: 

i. For U (1, 2)*- Mmπ –O(X), x U iff y   V. 

ii. There exists disjoint (1, 2)*- Mmπ –open sets U and V such that x U, y V. 

3. If  x, y X such that (1, 2)*- Mmπ –cl ({x}) ≠ (1, 2)*- Mmπ –cl ({y}), then there exists 

(1, 2)*- Mmπ –closed sets F1 and F2 such that x  F1, y  F1, y   F2, x  F1 and X = 

F1 U F2. 

Proof.  1 => 2: Let x, y X. Then (1, 2)*- Mmπ –cl ({x}) = (1, 2)*- Mmπ –cl ({y}) or (1, 2)*- 

Mmπ –cl ({x}) ≠ (1, 2)*- Mmπ –cl ({y}). If (1, 2)*- Mmπ –cl ({x}) = (1, 2)*- Mmπ –cl ({y}) and 
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U (1, 2)*- Mmπ –O(X), then x U => y (1, 2)*- Mmπ –cl({y}) = (1, 2)*- Mmπ –cl({x}) 

 U (as X is (1, 2)*- Mmπ –R0). If (1, 2)*- Mmπ –cl({x}) ≠ (1, 2)*- Mmπ –cl({y}), then there 

exists U, V (1, 2)*- Mmπ –O(X) such that x (1, 2)*- Mmπ –cl({x})  U, y (1, 2)*- Mmπ 

–cl({y})  V and U ∩ V = φ. 

2 => 3: Let x, y X such that (1, 2)*- Mmπ –cl({x}) ≠ (1, 2)*- Mmπ –cl({y}). Then x (1, 2)*- 

Mmπ –cl({y}), so that there exists G (1, 2)*- Mmπ –O(X) such that x G and y G. Thus by 

[2], there exists disjoint (1, 2)*- Mmπ –open sets U and V such that x U, y V. Put F1 = X \ 

V and F2 = X \ U. Then F1, F2 (1, 2)*- Mmπ –C(X), x   F1, y  F1,  y   F2,  x  F2 and X = 

F1 U F2. 

3 => 1: Let U (1, 2)*- Mmπ –O(X) and x U. Then (1, 2)*- Mmπ -cl ({x})  U. In fact, 

otherwise there exists y (1, 2)*- Mmπ – cl ({x}) ∩ (X \ U). Then (1, 2)*- Mmπ –cl ({x}) ≠ (1, 

2)*- Mmπ –cl ({y}) (as x (1, 2)*- Mmπ –cl ({y})) and so by [3], there exists F1, F2 (1, 2)*- 

Mmπ –C(X) such that x  F1, y  F1,  y   F2,  x  F2 and X = F1 U F2. Then y   F2 \ F1 = X \ 

F1  and  x  X \ F1, where X \ F1 (1, 2)*- Mmπ –O(X), which is a contradiction to the fact that 

y(1, 2)*- Mmπ -cl ({x}). Hence (1, 2)*- Mmπ -cl ({x})  U. Thus X is (1, 2)*- Mmπ –R0. To 

show X  to be (1, 2)*- Mmπ – R1 assume that a, b X with (1, 2)*- Mmπ –cl ({a}) ≠ (1, 2)*- Mmπ 

–cl ({b}). Then as above, there exists P1, P2 (1, 2)*- Mmπ –C(X) such that a   P1, b  P1,  b 

 P2,  a  P2 and X = P1 U P2. Thus a   P1 \ P2(1, 2)*- Mmπ –O(X), b  P2 \ P1(1, 2)*- Mmπ 

–O(X). So (1, 2)*- Mmπ -cl ({a})   P1 \ P2. (1, 2)*- Mmπ -cl ({b})   P2 \ P1. Thus X is (1, 2)*- 

Mmπ –R1 space. 

Remark 3. 30.  From the above theorems and examples we have the following implications. 

1. (1, 2)*- Mmπ –T0.   2. (1, 2)*- Mmπ –T1.  3. (1, 2)*- Mmπ -T2. 4. (1, 2)*- Mmπ –C0 

5.  (1, 2)*- Mmπ –C1  6. (1, 2)*- Mmπ –R0   7. (1, 2)*- Mmπ –R1. 

 

 

 

 

 

 

 

 

1 

3 

6 2 7 4 

5 

International Journal For Research In Mathematics And Statistics                       ISSN: 208-2662

Volume-2 | Issue-2 | February,2016 | Paper-2 14                   



 

 

Definition 3. 31.   A space X is said to be (1, 2)*- Mmπ -regular for each (1, 2)*- Mmπ -closed 

set F and each point  x F  there exist disjoint (1, 2)*- Mmπ -open sets U and V such that  

x Є U and F V. 

Theorem 3. 32.  An (1, 2)*- Mmπ -T0-space is (1, 2)*- Mmπ -T2-space if it is (1, 2)*- Mmπ -

regular. 

Proof. Let X be (1, 2)*- Mmπ -T0-space and (1, 2)*- Mmπ -regular. If x, yX, x ≠y, there exists 

U Є (1, 2)*-Mmπ-O(X)  such that U contains one of x  and y, say x but not y. Then X\U is  

(1, 2)*- Mmπ -closed and x X \ U. Since X is (1, 2)*- Mmπ -regular, there exist disjoint (1, 2)*- 

Mmπ -open sets V1 and V2 such that xV1 and X \ U   V2. Thus xV1 and yV2, V1 ∩ V2 = φ. 

Hence X is (1, 2)*- Mmπ -T2-space. 

4. (1, 2)*- Mmπ –NEIGHBOURHOOD AND (1, 2)*- Mmπ – ACCUMULATION POINTS 

Definition 4. 1.   A subset N of   X is said to be (1, 2)*- Mmπ –neighbourhood of a point x Є 

X   if there exist (1, 2)*- Mmπ -open set G of X such that x Є G  N. 

Example 4. 2. Let X = {a, b, c}, τ1 = {φ, X, {a}, {b}} and  τ2 = {φ, X, {a, c}, {b, c}}. Here 

{φ, X, {a}, {b}, {a, c}, {b, c}} are (1, 2)*- Mmπ –open sets in X. Then, {b}, {a, b}, {b, c} and 

X are (1, 2)*- Mmπ –neighbourhood of {b}. 

Theorem 4. 3. Let X be a biminimal space. If  NM and N is (1, 2)*- Mmπ –neighbourhood of 

a point x, then M is (1, 2)*- Mmπ –neighbourhood of a point x. 

Proof. Suppose that NM  and N is (1, 2)*- Mmπ –neighbourhood of a point x. Thus there 

exists (1, 2)*- Mmπ –open set G of X  such that x Є G  N. By assumption, we have NM. 

The theorem is now complete. 

Theorem 4. 4. Let X be a biminimal space, G be any subset of X and x X. G  is (1, 2)*- Mmπ - 

open set of X if and only if G is (1, 2)*- Mmπ –neighbourhood of x for any x G. 

Proof.  Let X be a biminimal space, G be any subset of X and x X.  

Suppose that G is (1, 2)*- Mmπ –open set of X. 

Case 1. If  G = φ, it is clear. 

Case 2. If  G ≠ φ, let x G. Since G is (1, 2)*- Mmπ –open and G  G, G is (1, 2)*- Mmπ –

neighbourhood of x 

Conversely, suppose that G is (1, 2)*- Mmπ –neighbourhood of x for any x Є G. Now, we would 

like to show that G is (1, 2)*- Mmπ –open. Since x Є G and G is (1, 2)*- Mmπ –neighbourhood of 

x, there exists (1, 2)*- Mmπ –open set Ux  such that x Є Ux  G and so {x}   Ux  G. It 

follows that, 
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Since Ux  is (1, 2)*- Mmπ –open for any x Є G and by Theorem 3. 7[8], we have G is (1, 2)*- 

Mmπ –open set of X. 

Theorem 4. 5. For a space X, the following statements are equivalent. 

1. X  is (1, 2)*- Mmπ-T2. 

2. If x Є X, then for each y ≠ x, there is an (1, 2)*- Mmπ-neighbourhood N(x) of x, such that y 

(1, 2)*- Mmπ-cl (N(x)). 

3. For each x Є {(1, 2)*- Mmπ-cl (N): N is an (1, 2)*- Mmπ-neighbourhood of  x} = {x}. 

Proof. 1 => 2: Let x X. If  y X is such that y ≠ x, there exist disjoint (1, 2)*- Mmπ-open sets 

U, V such that x Є U and y Є V. Then x Є U   X – V which implies that X – V is an (1, 2)*- 

Mmπ-neighbourhood of x. Also X –V is (1, 2)*- Mmπ-closed and y X – V. Let N(x) = X – V. 

Then y (1, 2)*- Mmπ-cl (N(x)). 

2 => 3: Obvious. 

3 => 1: Let x, y Є X, x ≠ y. By hypothesis, there is atleast an (1, 2)*- Mmπ-neighbourhood  N of  

x such that y (1, 2)*- Mmπ-cl (N). We have x X - (1, 2)*- Mmπ-cl (N) is (1, 2)*- Mmπ-open. 

Since N is an (1, 2)*- Mmπ-neighbourhood of x, there exists U Є (1, 2)*- Mmπ-O(X) such that x Є 

U  N and U ∩(X - (1, 2)*- Mmπ-cl (N)) = φ. Hence X is (1, 2)*- Mmπ-T2. 

Definition 4. 6.  A point x of X is called a (1, 2)*- Mmπ –accumulation point of a subset A of 

X  if G ∩ (A– {x}) ≠ φ for any (1, 2)*- Mmπ –open set G in X such that x Є G. 

We denote the set of all (1, 2)*- Mmπ –accumulation point of A by (1, 2)*- Mmπ –acc (A). 

Example 4. 7.  In Example 4. 2, {3} is (1, 2)*- Mmπ –accumulation point of X and (1, 2)*- 

Mmπ –acc(X) = {3}. 

Lemma 4. 8.  Let X is a biminimal space and A, B be a subset of X. If A  B,  then (1, 2)*- 

Mmπ –acc (A)  (1, 2)*- Mmπ –acc (B). 

Proof. Let A  B and x Є (1, 2)*- Mmπ –acc (A). Then for any (1, 2)*- Mmπ –open set G in X 

such that x Є G, G ∩ (A – {x}) ≠ φ. Since A- {x}  B-{x} and so φ ≠ G ∩ (A – {x})   G ∩ (B 

– {x}). Hence x Є (1, 2)*- Mmπ –acc (B). 

Theorem  4. 9.  Let X be a biminimal space and A, B  be a subset of X.  Then (1, 2)*- Mmπ –acc 

(A ∩ B)  (1, 2)*- Mmπ –acc (A) ∩ (1, 2)*- Mmπ –acc (B). 
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Proof. Let A∩B  A,  A∩B  B  and Lemma 4. 8, we obtain that (1, 2)*- Mmπ –acc (A ∩ B) 

 (1, 2)*- Mmπ –acc (A) and (1, 2)*- Mmπ –acc (A ∩ B)  (1, 2)*- Mmπ –acc (B). Therefore, (1, 

2)*- Mmπ –acc (A ∩ B)  (1, 2)*- Mmπ –acc (A) ∩ (1, 2)*- Mmπ –acc (B). 

Theorem 4. 10.  Let X be a biminimal space and A, B  be a subset of X.  A is (1, 2)*- Mmπ – 

closed set of X if and only if (1, 2)*- Mmπ –acc (A)  A. 

Proof.  Let X be a biminimal space and A X.  

Assume that A is (1, 2)*- Mmπ –closed set of X. Suppose that (1, 2)*- Mmπ –acc (A)  A. Thus 

there exists x Є (1, 2)*- Mmπ –acc (A), but x A. Since x Є (1, 2)*- Mmπ –acc (A), G ∩ (A – 

{x}) ≠ φ for any (1, 2)*- Mmπ –open set G in X such that x Є G. Since x A, G ∩ A = G ∩ (A – 

{x}) ≠ φ  for any (1, 2)*- Mmπ –open set G in X such that x Є G. By assumption, we get X – A is 

(1, 2)*- Mmπ –open and x Є X –A. It follows that (X – A) ∩ A ≠ φ, this is contradiction. 

Therefore, (1, 2)*- Mmπ –acc (A)  A. 

Conversely, Assume that (1, 2)*- Mmπ -acc (A)  A. Next we would like to show that A is (1, 

2)*- Mmπ -closed set of X, i. e., we must to show that X – A is (1, 2)*- Mmπ –open set of X. 

Case 1. If X – A = φ, then A is (1, 2)*- Mmπ –closed set of X. 

Case 2. If X – A ≠ φ. Let x Є X – A. Thus x A. Since (1, 2)*- Mmπ -acc (A)  A, x (1, 2)*- 

Mmπ -acc (A). Thus there exists (1, 2)*- Mmπ –open set G in X such that x Є G and G ∩ (A – 

{x}) = φ. Since x A, G ∩ A = G ∩ (A – {x}) = φ and we also have x Є G  (X – A). Thus X 

–A is (1, 2)*- Mmπ –neighbourhood of  x. By Theorem 4. 4, we can imply that X –A is (1, 2)*- 

Mmπ – open set of X. Consequently A is (1, 2)*- Mmπ –closed set of X. 
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