Low Separation Axioms Via (1, 2)*- $\mathbf{M}_{\mathrm{m} \pi}$-Closed Sets

In Biminimal Spaces

K. Mohana ${ }^{1}$, I. Arockiarani ${ }^{2}$ and S. Jafari ${ }^{3}$

${ }^{1}$ Assistant Professor, Department of Mathematics Nirmala College for women, Coimbatore - 641 018, India.
email: mohanamaths@yahoo.co.in
${ }^{2}$ Associate Professor, Department of Mathematics, Nirmala College For women, Coimbatore-641 018, India. email: stell11960@yahoo.co.in
${ }_{3}$ Professor of Mathematics College of Vestsjaelland South Herrestraede 11, 4200 Slagelse Denmark email: jafaripersia@gmail.com

Abstract

The purpose of this paper is to introduce the concepts of $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi^{-}} \mathrm{T}_{0}$ space, $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$ space and $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{2}$ space in a biminimal spaces. We study some of the characterizations and properties of these separation axioms. Further we discuss (1, 2)*$M_{m \pi}-R_{0}$ and (1,2)*- $M_{m \pi}-R_{1}$ spaces in biminimal spaces. The implications of these axioms among themselves are also investigated

Key Words \& Phrases: $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi^{-}} \mathrm{T}_{0},(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1,}(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{2},(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-$ $\mathrm{R}_{0},(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{1}$.

2000 AMS Classification: 54E55.

1. INTRODUCTION

The concept of minimal structure (briefly m-structure) was introduced by V. Popa and T. Noiri [12] in 2000. Also they introduced the notion of m_{X}-open set and m_{X}-closed set and characterize those sets using m_{X}-closure and m_{X} - interior operators respectively. Further they introduced M-continuous functions and studied some of its basic properties. The separation axioms R_{0} and R_{1} were introduced and studied by N. A. Shanin [15] and C. T. Yang [16]. In 1963, they were rediscovered by A. S. Davis [4]. In literature, [1, 2, 3, 4, 6, 7, 9, 10, 11, 12] many authors introduced various separation axioms. Recently, Ravi et al [13, 14] studied $\tau_{1,2^{-}}$ open sets in biminimal spaces. In this paper we introduce and study some separation axioms in a biminimal structure space.

2. PRELIMINARIES

We recall the following definitions which are useful in the sequel.
Definition: 2. 1. [5] Let X be a non-empty set and $p(X)$ the power set of X. A sub family m_{x} of $p(X)$ is called a minimal structure (briefly m-structure) on X if $\varphi \in m_{x}$ and $X \in m_{x}$.
Definition: 2. 2. [13] A set X together with two minimal structures $m_{x}{ }^{1}$ and $m_{x}{ }^{2}$ is called a biminimal space and is denoted by ($\mathrm{X}, \mathrm{m}_{\mathrm{x}}{ }^{1}, \mathrm{~m}_{\mathrm{x}}{ }^{2}$).
Throughout this paper, ($\mathrm{X}, \mathrm{m}_{\mathrm{x}}{ }^{1}, \mathrm{~m}_{\mathrm{x}}{ }^{2}$) (or X) denote biminimal structure space.
Definition: 2. 3. [13] Let S be a subset of X. Then S is said to be $m_{X}{ }^{(1,2)^{*}}$-open if $S=A \cup B$ where $A \in m_{x}{ }^{1}$ and $B \in m_{x}{ }^{2}$. The complement of $m_{x}{ }^{(1,2)^{*}}$-open set is called $\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}$-closed set. The family of all $\mathrm{m}_{\mathrm{x}}^{(1,2)^{*}}$-open (resp. $\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}$-closed) subsets of X is denoted by $\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}-\mathrm{O}(\mathrm{X})\left(\right.$ resp. $\left.\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}-\mathrm{C}(\mathrm{X})\right)$.
Definition: 2.4. [13] Let S be a subset of X. Then

1. the $\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}$-interior of S denoted by $\mathrm{m}_{\mathrm{x}}^{(1,2)^{*}}$ - $-\mathrm{int}(\mathrm{S})$ is defined by $\cup\{\mathrm{G}: \mathrm{G} \subseteq \mathrm{S}$ and G is $\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}$-open $\}$.
2. the $\mathrm{m}_{\mathrm{x}}^{(1,2)^{*}}$-closure of S denoted by $\mathrm{m}_{\mathrm{x}}^{(1,2)^{*}}$-cl(S) is defined by $\cap\{\mathrm{F}: \mathrm{S} \subseteq \mathrm{F}$ and F is $\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}$-closed $\}$.
Definition: 2. 5. [14] A subset A of X is called regular $-\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}$-open if $\mathrm{A}=\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}$-int $\left(\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}-\mathrm{cl}(\mathrm{A})\right)$.
Definition 2. 6. [8] The finite union of regular $-\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}$-open set in X is called $\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}$ - π-open set.
Definition 2.7. [8] A subset A of X is said to be $\mathrm{m}^{(1,2)^{*}}$ - $\pi \mathrm{g}$-closed set if $\mathrm{m}_{x}^{(1,2)^{*}}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{G}$ whenever $\mathrm{A} \subseteq \mathrm{G}$ and G is $\mathrm{m}_{x}^{(1,2)^{*}}-\pi$-open set. The complement of an $\mathrm{m}^{(1,2)^{*}}$ - $\pi \mathrm{g}$-closed set is called $\mathrm{m}^{(1,2)^{*}}-\pi \mathrm{g}$-open set.
The family of all $\mathrm{m}^{(1,2)^{*}}-\pi \mathrm{g}$-open (resp. $\mathrm{m}^{(1,2)^{*}}-\pi \mathrm{g}$-closed) subsets of X is denoted by $\mathrm{m}^{(1,2)^{*}}-$ $\pi \mathrm{g}-\mathrm{O}(\mathrm{X})\left(\right.$ resp. $\left.\mathrm{m}^{(1,2)^{*}}-\pi \mathrm{g}-\mathrm{C}(\mathrm{X})\right)$.
Definition 2. 8. [8] A subset A of X is said to be $(1,2)^{*}-M_{m \pi}$-closed set if $\mathrm{m}_{x}^{(1,2)^{*}}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{G}$ whenever $\mathrm{A} \subseteq \mathrm{G}$ and G is $\mathrm{m}^{(1,2)^{*}}$ - $\pi \mathrm{g}$-open set. The complement of an $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-closed set is called a $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open set in X .

The family of all (1,2)*- $\mathrm{M}_{\mathrm{m} \pi}$-open (resp. (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}$-closed) subsets of X is denoted by (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})$ (resp. (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}(\mathrm{X})$).

3. $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi^{-}}$SEPARATION AXIOMS:

Definition 3. 1. The union of all $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open sets in a biminimal space X , which are contained in a subset A of X is called the $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-interior of A and is denoted by $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-int (A).

Definition 3. 2. The (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}$-closure of A of X is the intersection of all $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}{ }^{-}$ closed sets that contains A and is denoted by $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\mathrm{A})$.
Definition 3. 3. A biminimal space X is called $(1,2)^{*}-M_{m \pi}-T_{0}$ (resp. $m^{(1,2)^{*}}-\pi \mathrm{g}-\mathrm{T}_{0}$) space if for any two distinct points x, y in X, there exists a $(1,2)^{*}-M_{m \pi}-$ open $\left(m^{(1,2)^{*}}-\pi g-\right.$ open $)$ set containing only one of x and y but not the other.
Clearly, every $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{0}$ space is a $\mathrm{m}^{(1,2)^{*}}-\pi \mathrm{g}-\mathrm{T}_{0}$ space, since every $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-$ open set is a $\mathrm{m}^{(1,2)^{*}}-\pi \mathrm{g}$-open set. The converse is not true in general.
Example 3.4. Let $X=\{a, b, c\}, \tau_{1}=\{\varphi, X,\{b\},\{a, b\}\}$ and $\tau_{2}=\{\varphi, X,\{b, c\}\}$. Then
 $\{b\},\{a, b\},\{b, c\}\}$. Therefore, X is $m^{(1,2)^{*}}-\pi g-T_{0}$, but not $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{0}$ space.
Theorem 3. 5. If $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-closures of distinct points are distinct in any biminimal space X, then it is $(1,2)^{*}-M_{m \pi}-T_{0}$.

Proof. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq \mathrm{y}$. By the hypothesis, (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \neq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})$. Then, there exists a point $z € X$ such that z belongs to exactly one of the two sets, say $(1,2)^{*}$ $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})$ but not to $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$. If $\mathrm{y} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$, then (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-$ $\mathrm{cl}(\{\mathrm{y}\}) \subseteq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$ which implies $\mathrm{z} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$, a contradiction. So y $\in \mathrm{X}-(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}), \mathrm{a}(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-$ open set which does not contain x . This shows that X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{0}$.
Theorem 3. 6. In any biminimal space $X,(1,2)^{*}-M_{m \pi}$-closures of distinct points are distinct. Proof. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq \mathrm{y}$. Case (a): $\{\mathrm{x}\}$ is $\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}$-closed. Then $\{\mathrm{x}\}$ is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-closed.

Now $\mathrm{y} \neq \mathrm{x}$ implies $\mathrm{y} \notin\{\mathrm{x}\}=(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$. Hence $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\}) \neq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-$ $\mathrm{cl}(\{\mathrm{x}\})$. Case (b): $\{\mathrm{x}\}$ is not $\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}$-closed. Then $\mathrm{X}-\{\mathrm{x}\}$ is not $\mathrm{m}_{\mathrm{x}}{ }^{(1,2)^{*}}$ - open and therefore, X is only $m_{x}{ }^{(1,2)^{*}}$-open set containing $X-\{x\}$. Hence $X-\{x\}$ is $(1,2)^{*}-M_{m \pi}-$ closed set. Now $y \in$ $X-\{x\} \operatorname{implies}(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\}) \subseteq X-\{x\}$. Hence $\mathrm{x} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})$ and $(1,2)^{*}-$ $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\}) \neq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$.

Theorem 3. 7. Every biminimal space is $(1,2) *-M_{m \pi}-T_{0}$.
Proof. Follows from Theorem 3. 5. and Theorem 3.6.

Definition 3. 8. A biminimal space X is called a (1,2)*- $M_{m \pi}-C_{0}$ space if for any two distinct points x , y in X , there exists a $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open set such that $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\mathrm{G})$ contains one of x and y, but not the other.
Theorem 3. 9. If a biminimal space X is $(1,2)^{*}-M_{m \pi}-C_{0}$ then it is $(1,2)^{*}-M_{m \pi}-T_{0}$.
Proof. Let X be $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}_{0}$ and $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}$. Then there exists a $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-$ open set G of X such that $x \in(1,2)^{*}-M_{m \pi}-c l(G)$ and $y \notin(1,2)^{*}-M_{m \pi}-c l(G)$. Since G is $(1,2)^{*}-M_{m \pi}$ - open, $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\mathrm{G})$ is also (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-$ open. Moreover $\mathrm{x} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\mathrm{G})$ and y $\notin(1,2) *-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\mathrm{G})$. Hence X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{0}$.

Definition 3. 10. A biminimal space X is said to be (1,2)*- $M_{m \pi}-T_{1}$ if for any two distinct points x , y in X , there exists a pair of $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-$ open sets, one containing x but not y and the other containing y but not x .
Definition 3. 11. A biminimal space X is said to be $(1,2)^{*}-M_{m \pi}-C_{1}$ if for any two distinct points x, y in X, there exists $U, V \in(1,2)^{*}-M_{m \pi}-O(X)$, such that $(1,2)^{*}-M_{m \pi}-\mathrm{cl}(U)$ containing x but not y and $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\mathrm{V})$ containing y but not x .

Remark 3. 12.

1. Every $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$ space is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{0}$.
2. Every $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}_{1}$ space is $(1,2) *-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$.
3. Every $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}_{1}$ space is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}_{0}$.

But the converses are not true in general as illustrated in the next example.

Example 3. 13.

1. Let $X=\{a, b, c\}, \tau_{1}=\{\varphi, X,\{b\}\}$ and $\tau_{2}=\{\varphi, X,\{c\}\}$. Then $(1,2)^{*}-M_{m \pi}-O(X)=\{\varphi, X,\{b\}$, $\{c\},\{b, c\}\}$. It is clear that, X is $(1,2)^{*}-M_{m \pi}-T_{0}$, but not $(1,2)^{*}-M_{m \pi}-T_{1}$ space.
2. Let $X=\{a, b, c\}, \tau_{1}=\{\varphi, X,\{a\}\}$ and $\tau_{2}=\{\varphi, X,\{b\}\}$. Then $(1,2)^{*}-M_{m \pi}-O(X)=\{\varphi, X$, $\{a\},\{b\},\{a, b\}\}$. Here X is $(1,2)^{*}-M_{m \pi}-T_{0}$, but not $(1,2)^{*}-M_{m \pi}-C_{0}$ space.
3. Let $X=\{a, b, c, d\}, \tau_{1}=\{\varphi, X,\{a\},\{b\}\}$ and $\tau_{2}=\{\varphi, X,\{a, b, d\}\}$. Then $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi^{-}}$ $O(X)=\{\varphi, X,\{a\},\{b\},\{a, b\},\{a, b, d\}\}$. Then, X is $(1,2)^{*}-M_{m \pi}-C_{0}$, but not $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$ $-\mathrm{C}_{1}$ space.

Theorem 3. 14. In a biminimal space X, the following statements are equivalent.

1. $\quad \mathrm{X}$ is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$.
2. Each one point set is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-closed set in X .

Proof. (1) => (2). Let X be (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$ and $\mathrm{x} \in \mathrm{X}$. Suppose (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{x\}) \neq\{\mathrm{x}\}$. Then we can find an element $\mathrm{y} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$ with $\mathrm{y} \neq \mathrm{x}$. Since X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$, there exist $(1,2)^{*}-M_{m \pi}$-open sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$. Now $x \in$
V^{C} and V^{C} is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-closed set. Therefore, $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{V}^{\mathrm{C}}$ which implies y $\in V^{C}$, a contraction. Hence, $(1,2)^{*}-M_{m \pi}-c l(\{x\})=\{x\}$ or $\{x\}$ is $(1,2)^{*}-M_{m \pi}$-closed. (2) $=>$ (1). Let $x, y \in X$ and $x \neq y$. Then $\{x\}$ and $\{y\}$ are $(1,2)^{*}-M_{m \pi}$-closed. Therefore, $U=$ $(\{y\})^{C}$ and $V=(\{x\})^{C}$ are $(1,2)^{*}-M_{m \pi}-$ open and $x \in U, y \notin U$ and $y \in V, x \notin V$. Hence is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$.
Definition 3. 15. A biminimal space X is called a (1,2)*- $M_{m \pi}-T_{2}$ space if for any two distinct points x , y in X , there exists a pair of disjoint $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-$ open sets U and V such that $x \in U$ and $y \in V$ and $U \cap V=\varphi$.

Definition: 3. 16 A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}$-irresolute if the inverse image of every $(1,2) *-\mathrm{M}_{\mathrm{m} \pi}$-closed set in Y is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-closed set in X .

Theorem 3. 17. If f: $X \rightarrow Y$ is an injective, (1, 2)*- $M_{m \pi}$-irresolute function and Y is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{2}$ then X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{2}$.
Proof. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{x} \neq \mathrm{y}$. Since f is injective, $\mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y})$ in Y and there exist disjoint (1, 2)*$M_{m \pi}$-open sets U, V such that $f(x) \in U$ and $f(y) \in V$. Let $G=f^{-1}(U)$ and $H=f^{-1}(V)$. Then $x \in G, y$ $\in H$ and $G, H \in(1,2)^{*}-M_{m \pi}-O(X)$. Also $G \cap H=f^{-1}(U) \cap f^{-1}(V)=f^{-1}(U \cap V)=\varphi$. Thus X is $(1,2) *-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{2}$.
Theorem 3. 18. If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is an injective, (1,2)*- $\mathrm{M}_{\mathrm{m} \pi}$-irresolute function and Y is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$ then X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$.
Proof. The proof is similar to the above theorem.
Remark 3. 19. Every (1, 2)*- $M_{m \pi}-T_{2}$ space is (1, 2)*- $M_{m \pi}-T_{1}$.
Definition 3.20. A biminimal space X is called a (1,2)*- $M_{m \pi}-R_{0}$ space if for each (1,2)*$\mathrm{M}_{\mathrm{m} \pi}$-open set $\mathrm{G}, \mathrm{x} \in \mathrm{G}$, implies $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{G}$.

Theorem 3. 21 : For any biminimal space X, the following are equivalent:

1. X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{0}$.
2. $\mathrm{F} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}(\mathrm{X})$ and $\mathrm{x} \notin \mathrm{F}=>\mathrm{F} \subseteq \mathrm{U}$ and $\mathrm{x} \notin \mathrm{U}$ for some $\mathrm{U} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi^{-}}$ $\mathrm{O}(\mathrm{X})$.
3. $\mathrm{F} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}(\mathrm{X})$ and $\mathrm{x} \notin \mathrm{F} \Rightarrow \mathrm{F} \cap(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})=\varphi$.
4. For any two distinct points x , y of X , either $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-cl $(\{\mathrm{x}\})=(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-cl (\{y\}) or $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \cap(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})=\varphi$.
Proof. 1 => 2: $\mathrm{F} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}(\mathrm{X})$ and $\mathrm{x} \notin \mathrm{F} \Rightarrow \mathrm{x} \in \mathrm{X} \backslash \mathrm{F} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})=>$ $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{X} \backslash \mathrm{F}($ by $(1))$. Put $\mathrm{U}=\mathrm{X} \backslash(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$. Then $\mathrm{x} \notin \mathrm{U} \in(1$, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})$ and $\mathrm{F} \subseteq \mathrm{U}$.

2=> 3: $\mathrm{F} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}(\mathrm{X})$ and $\mathrm{x} \notin \mathrm{F} \Rightarrow$ there exists $\mathrm{U} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})$ such that x $\notin \mathrm{U}$ and $\mathrm{F} \subseteq \mathrm{U}(\mathrm{by}(2))=>\mathrm{U} \cap(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})=\varphi=>\mathrm{F} \cap(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})=\varphi$. 3=> 4: Suppose that for any two distinct points x, y of $X,(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{x\}) \neq(1,2)^{*}-$ $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})$. Then suppose without any loss of generality that there exists some $\mathrm{z} \in(1,2)^{*}$ $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$ such that $\mathrm{z} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})$. Thus there exists $\mathrm{V} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})$ such that $\mathrm{z} \in \mathrm{V}$ and $\mathrm{y} \notin \mathrm{V}$ but $\mathrm{x} \in \mathrm{V}$. Thus $\mathrm{x} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})$. Hence by (3), (1, 2)*$\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \cap(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})=\varphi$.
4=> 1 : Let $U \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})$ and $\mathrm{x} \in \mathrm{U}$. Then for each $\mathrm{y} \notin \mathrm{U}, \mathrm{x} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-cl (\{y\}). Thus (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{x\}) \neq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})$. Hence by (4), (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{x\})$ $\cap(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})=\varphi$, for each $\mathrm{y} \in \mathrm{X} \backslash \mathrm{U}$. So $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \cap\left[\mathrm{U}\left\{(1,2)^{*}-\right.\right.$ $\left.\left.\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\}): \mathrm{y} \in \mathrm{X} \backslash \mathrm{U}\right\}\right]=\varphi$
Now, $\mathrm{U} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi^{-}} \mathrm{O}(\mathrm{X})$ and $\mathrm{y} \in \mathrm{X} \backslash \mathrm{U}=>\{\mathrm{y}\} \subseteq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi^{-}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi^{-}} .{ }^{-} .}$ $\mathrm{cl}(\mathrm{X} \backslash \mathrm{U})=\mathrm{X} \backslash \mathrm{U} . T h u s \mathrm{X} \backslash \mathrm{U}=\mathrm{U}\left\{(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\}): \mathrm{y} \in \mathrm{X} \backslash \mathrm{U}\right\}$. Hence from (i), (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \cap(\mathrm{X} \backslash \mathrm{U})=\varphi=>(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$, showing that X is $(1,2) *-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{0}$.
Definition 3. 22. A biminimal space X is called a (1,2)*- $M_{m \pi}-R_{1}$ space if for any two distinct points x , y in X , with $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \neq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})$, there exists pair of disjoint $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open sets U and V such that $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and $(1$, 2)* $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\}) \subseteq \mathrm{V}$.

Theorem 3. 23. Every (1, 2)*- $M_{m \pi}-R_{1}$ biminimal space is (1, 2)*- $M_{m \pi}-R_{0}$.
Proof. Let X be $(1,2)^{*}-M_{m \pi}-R_{1}$ and let G be a $(1,2)^{*}-M_{m \pi}$-open set containing x. If (1, 2)*- $M_{m \pi}$ $-\mathrm{cl}(\{x\}) \nsubseteq G$ then there exists an element $y \in(1,2)^{*}-M_{m \pi}-\mathrm{cl}(\{x\}) \cap G^{C}$. Since G^{C} is $(1,2)^{*}-M_{m \pi}$ -closed, $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{G}^{\mathrm{C}}$. $\operatorname{Now}(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \neq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})$ and X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{1}$. Hence there exists disjoint (1,2)*- $\mathrm{M}_{\mathrm{m} \pi}-$ open sets containing (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}$ (\{x\}) and (1,2)*- $M_{m \pi}-\mathrm{cl}(\{y\})$ respectively. This is not possible, since $y \in(1,2)^{*}-M_{m \pi}-c l(\{x\})$ $\cap(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})$.
Theorem 3. 24. Let X be a biminimal space. Then X is $(1,2)^{*}-M_{m \pi}-R_{0}$ if and only if for every $(1,2)^{*}-M_{m \pi}$-closed set K and $x \notin K$, there exists a $(1,2) *-M_{m \pi}$-open set S such that $K \subset S$ and $x \notin S$.

Proof. Necessity. Let X be a $(1,2)^{*}-M_{m \pi}-R_{0}$ space and K be a $(1,2)^{*}-M_{m \pi}$-closed subset such that $x \notin K$. We have $X \backslash K$ is $(1,2)^{*}-M_{m \pi}$-open and $x \in X \backslash K$. Since X is $(1,2)^{*}-M_{m \pi}$
$-R 0$, then $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \subset \mathrm{X} \backslash \mathrm{K}$. We obtain $\mathrm{K} \subset \mathrm{X} \backslash(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$. Take S $=\mathrm{X} \backslash(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$. Thus, S is a $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open set such that $\mathrm{K} \subset \mathrm{S}$ and $\mathrm{x} \notin \mathrm{S}$.

Sufficiency. Let S be $a(1,2)^{*}-M_{m \pi}$-open set and $x \in U$. Then $X \backslash S$ is a $(1,2)^{*}-M_{m \pi}$-closed set and $\mathrm{x} \notin \mathrm{X} \backslash \mathrm{S}$. Then there exists a $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open subset U such that $\mathrm{X} \backslash \mathrm{S} \subset \mathrm{U}$ and $x \notin U$. We obtain $X \backslash U \subset S$ and $x \in X \backslash U$. Since $X \backslash U$ is a $(1,2)^{*}-M_{m \pi}$-closed set, then $(1,2)^{*}-M_{m \pi}-c l(\{x\}) \subset X \backslash U \subset S$. Hence, X is a $(1,2) *-M_{m \pi}-R_{0}$ space.
Theorem 3. 25. Let X be a biminimal space. Then X is $(1,2)^{*}-M_{m \pi}-T_{1}$ if and only if it is a $(1,2)^{*}-$ $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{0}$ and $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{0}$.

Proof. Let X be a $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$ space. By the definition of $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$ space, it is a (1, 2)*$\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{0}$ and (1,2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{0}$ space.

Conversely, let X be a $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{0}$ space and $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{0}$ space. Let x , y be any two distinct points of X. Since X is $(1,2)^{*}-M_{m \pi}-T_{0}$, then there exists a $(1,2)^{*}-M_{m \pi}-$ open set U such that $\mathrm{x} \in \mathrm{U}$ and $\mathrm{y} \notin \mathrm{U}$ or there exists $\mathrm{a}(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open set V such that $\mathrm{y} \in \mathrm{V}$ and $\mathrm{x} \notin \mathrm{V}$. Let $\mathrm{x} \in$ U and $y \notin U$. Since X is $(1,2)^{*}-M_{m \pi}-R_{0}$, then $(1,2)^{*}-M_{m \pi}-c l(\{x\}) \subset U$. We have $y \notin U$ and then $\mathrm{y} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$. We obtain $\mathrm{y} \in \mathrm{X} \backslash(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$. Take $\mathrm{S}=\mathrm{X} \backslash(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$ $-\mathrm{cl}(\{\mathrm{x}\})$. Thus, U and S are $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-$ open sets containing x and y , respectively, such that $\mathrm{y} \notin$ U and $\mathrm{x} \notin \mathrm{S}$. Hence, X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$.

Theorem 3. 26. Let X be a biminimal space. Then X is a $(1,2)^{*}-M_{m \pi}-R_{0}$ space if and only if for any x and y in $X,(1,2) *-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{cl}(\{\mathrm{x}\}) \neq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})$ implies $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \cap(1$, 2)* $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})=\varphi$.

Proof. Let X be $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{0}$ and $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \neq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}$ (\{y\}). Then, there exist a $\mathrm{k} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$ such that $\mathrm{k} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})$ (or $\mathrm{k} \in(1$, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})$ such that $\mathrm{k} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$ and then there exists $\mathrm{V} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-$ $\mathrm{O}(\mathrm{X})$ such that $\mathrm{y} \notin \mathrm{V}$ and $\mathrm{k} \in \mathrm{V}$ and hence $\mathrm{x} \in \mathrm{V}$. Thus, $\mathrm{x} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})$ and $\mathrm{x} \in \mathrm{X} \backslash(1$, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\}) \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})$. We have (1,2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \subset \mathrm{X} \backslash(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}$ ($\{\mathrm{y}\})$ and $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \cap(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})=\varphi$.
Conversely, Let $\mathrm{V} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})$ and $\mathrm{x} \in \mathrm{V}$. Let $\mathrm{y} \notin \mathrm{V}$. We have $\mathrm{y} \in \mathrm{X} \backslash \mathrm{V}$. Then $\mathrm{x} \neq \mathrm{y}$ and $\mathrm{x} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})$. We obtain $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \neq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})$ and then $(1,2)^{*}-$ $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \cap(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})=\varphi$. Thus, $\mathrm{y} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$ and then $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-$ $\mathrm{cl}(\{\mathrm{x}\}) \subset \mathrm{V}$. We obtain that X is a $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{0}$ space.
Theorem 3. 27. Let X be a biminimal space. Then the following properties are equivalent:

1. X is a $(1,2)^{*}-M_{m \pi}-R_{0}$ space.
2. $x \in(1,2)^{*}-M_{m \pi}-\operatorname{cl}(\{y\})$ if and only if $y \in(1,2)^{*}-M_{m \pi}-c l(\{x\})$ for any points x and y in X.

Proof. $1=>2$. Let X be $(1,2)^{*}-M_{m \pi}-R_{0}$. Let $x \in(1,2)^{*}-M_{m \pi}-c l(\{y\})$ and S be any $(1,2)^{*}-$ $M_{m \pi}$-open set such that $y \in S . B y(1), x \in S$. Hence, every $(1,2)^{*}-M_{m \pi}$-open set which contains y contains x and then $y \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$.
$2 \Rightarrow 1$. Let U be $a(1,2)^{*}-M_{m \pi}$-open set and $x \in U$. If $y \notin U$, then $x \notin(1,2)^{*}-M_{m \pi}-c l(\{y\})$ and hence $y \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$. We have $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}\} \subset \mathrm{U}$. Thus, X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{0}$.

Theorem 3.28. The following are equivalent in a biminimal space X.

1. X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{2}$.
2. X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{1}$ and $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$.
3. X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{1}$ and $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{0}$.

Proof. 1=> 2: X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{2}$ implies X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$ and therefore by Theorem 3. 11 , every singleton set in X is $(1,2)^{*}-M_{m \pi}$-closed. Let $x, y \in X$ and $x \neq y$. Since X is (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{2}$, there exist two disjoint $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open sets U and V containing x and y respectively. Since $\{x\}$ and $\{y\}$ are $(1,2)^{*}-M_{m \pi}$-closed, X is $(1,2)^{*}-M_{m \pi}-R_{1}$.
$\mathbf{2}=>3$ 3: This is obvious, since X is $(1,2)^{*}-M_{m \pi}-T_{1}$ implies X is $(1,2)^{*}-M_{m \pi}-T_{0}$.
$3=>1$: Let $x, y \in X$ and $x \neq y$.
Case (a). $(1,2)^{*}-M_{m \pi}-\mathrm{cl}(\{x\}) \neq(1,2)^{*}-M_{m \pi}-\mathrm{cl}(\{y\})$. Since X is $(1,2)^{*}-M_{m \pi}-R_{1}$, there exist two disjoint $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open sets U and V such that $\mathrm{U} \supseteq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$ and $\mathrm{V} \supseteq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})$. Then $\mathrm{x} \in \mathrm{U}$ and $\mathrm{y} \in \mathrm{V}$.

Case (b). $(1,2)^{*}-M_{m \pi}-\operatorname{cl}(\{x\})=(1,2)^{*}-M_{m \pi}-c l(\{y\})$. Since $x \neq y$ and X is $(1,2)^{*}-M_{m \pi}-$ T_{0}, there exists a $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open sets U containing x but not y . Then $\mathrm{y} \in \mathrm{U}^{\mathrm{c}}, \mathrm{a}(1,2)^{*}-$ $\mathrm{M}_{\mathrm{m} \pi}-$ closed set. This implies $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{U}^{\mathrm{c}}$ and therefore $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}$ $(\{\mathrm{x}\}) \subseteq \mathrm{U}^{\mathrm{c}}$ or $\mathrm{x} \in \mathrm{U}^{\mathrm{c}}$, which is a contradiction. Hence case (b) is not possible.

Theorem 3. 29. Let X be any biminimal space. Then the following are equivalent.

1. X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{1}$ space.
2. For any $x, y \in X$, one of the following holds:
i. \quad For $U \in(1,2)^{*}-M_{m \pi}-O(X), x \in U$ iff $y \in V$.
ii. \quad There exists disjoint $(1,2)^{*}-M_{m \pi}$-open sets U and V such that $x \in U, y \in V$.
3. If $x, y \in X$ such that $(1,2)^{*}-M_{m \pi}-\operatorname{cl}(\{x\}) \neq(1,2)^{*}-M_{m \pi}-c l(\{y\})$, then there exists $(1,2)^{*}-M_{m \pi}-$ closed sets F_{1} and F_{2} such that $x \in F_{1}, y \notin F_{1}, y \in F_{2}, x \notin F_{1}$ and $X=$ $\mathrm{F}_{1} \mathrm{UF}_{2}$.

Proof. $1=>2$: Let $x, y \in X$. Then $(1,2)^{*}-M_{m \pi}-c l(\{x\})=(1,2)^{*}-M_{m \pi}-c l(\{y\})$ or $(1,2)^{*}-$ $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \neq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})$. If $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})=(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})$ and
$\mathrm{U} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})$, then $\mathrm{x} \in \mathrm{U}=>\mathrm{y} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})=(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\})$ $\subseteq \mathrm{U}\left(\operatorname{as} \mathrm{X}\right.$ is $\left.(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{0}\right)$. If $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \neq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})$, then there exists $\mathrm{U}, \mathrm{V} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})$ such that $\mathrm{x} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}, \mathrm{y} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$ $-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{V}$ and $\mathrm{U} \cap \mathrm{V}=\varphi$.
$2=>$ 3: Let $x, y \in X$ such that $(1,2)^{*}-M_{m \pi}-\operatorname{cl}(\{x\}) \neq(1,2)^{*}-M_{m \pi}-c l(\{y\})$. Then $x \notin(1,2)^{*}-$ $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{y}\})$, so that there exists $\mathrm{G} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})$ such that $\mathrm{x} \in \mathrm{G}$ and $\mathrm{y} \notin \mathrm{G}$. Thus by [2], there exists disjoint (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}$-open sets U and V such that $\mathrm{x} \in \mathrm{U}, \mathrm{y} \in \mathrm{V}$. Put $\mathrm{F}_{1}=\mathrm{X} \backslash$ V and $F_{2}=X \backslash U$. Then $F_{1}, F_{2} \in(1,2)^{*}-M_{m \pi}-C(X), x \in F_{1}, y \notin F_{1}, y \in F_{2}, x \notin F_{2}$ and $X=$ $\mathrm{F}_{1} \mathrm{UF}_{2}$.

3 => 1: Let $U \in(1,2)^{*}-M_{m \pi}-O(X)$ and $x \in U$. Then (1, 2)*- $M_{m \pi}-c l(\{x\}) \subseteq U$. In fact, otherwise there exists $\mathrm{y} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \cap(\mathrm{X} \backslash \mathrm{U})$. Then $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{x}\}) \neq(1$, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})\left(\right.$ as $\left.\mathrm{x} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{y\})\right)$ and so by [3], there exists $\mathrm{F}_{1}, \mathrm{~F}_{2} \in(1,2)^{*}-$ $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}(\mathrm{X})$ such that $\mathrm{x} \in \mathrm{F}_{1}, \mathrm{y} \notin \mathrm{F}_{1}, \mathrm{y} \in \mathrm{F}_{2}, \mathrm{x} \notin \mathrm{F}_{2}$ and $\mathrm{X}=\mathrm{F}_{1} \mathrm{U} \mathrm{F}_{2}$. Then $\mathrm{y} \in \mathrm{F}_{2} \backslash \mathrm{~F}_{1}=\mathrm{X} \backslash$ F_{1} and $\mathrm{x} \notin \mathrm{X} \backslash \mathrm{F}_{1}$, where $\mathrm{X} \backslash \mathrm{F}_{1} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})$, which is a contradiction to the fact that $y \in(1,2)^{*}-M_{m \pi}-c l(\{x\})$. Hence $(1,2)^{*}-M_{m \pi}-c l(\{x\}) \subseteq U$. Thus X is $(1,2)^{*}-M_{m \pi}-R_{0}$. To show X to be $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{1}$ assume that $\mathrm{a}, \mathrm{b} \in \mathrm{X}$ with $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{a}\}) \neq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$ $-\mathrm{cl}(\{\mathrm{b}\})$. Then as above, there exists $\mathrm{P}_{1}, \mathrm{P}_{2} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}(\mathrm{X})$ such that $\mathrm{a} \in \mathrm{P}_{1}, \mathrm{~b} \notin \mathrm{P}_{1}, \mathrm{~b}$ $\in \mathrm{P}_{2}$, a $\notin \mathrm{P}_{2}$ and $\mathrm{X}=\mathrm{P}_{1} \mathrm{U} \mathrm{P}_{2}$. Thus $\mathrm{a} \in \mathrm{P}_{1} \backslash \mathrm{P}_{2} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X}), \mathrm{b} \in \mathrm{P}_{2} \backslash \mathrm{P}_{1} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$ $-\mathrm{O}(\mathrm{X})$. So $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{a}\}) \subseteq \mathrm{P}_{1} \backslash \mathrm{P}_{2} .(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\{\mathrm{b}\}) \subseteq \mathrm{P}_{2} \backslash \mathrm{P}_{1}$. Thus X is $(1,2)^{*}-$ $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{1}$ space.

Remark 3. 30. From the above theorems and examples we have the following implications.

1. $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{0}$. 2. $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{1}$. 3. $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{2} .4 .(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}_{0}$
2. (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{C}_{1}$ 6. (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{0}$ 7. (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}-\mathrm{R}_{1}$.

Definition 3. 31. A space X is said to be (1,2)*- $M_{m \pi}$-regular for each (1,2)*- $M_{m \pi}$-closed set F and each point $x \notin F$ there exist disjoint $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open sets U and V such that $x \in U$ and $F \subset V$.

Theorem 3. 32. An (1, 2)*- $M_{m \pi}-T_{0}$-space is (1, 2)*- $M_{m \pi}-T_{2}$-space if it is (1, 2)*- $M_{m \pi}$ regular.
Proof. Let X be $(1,2)^{*}-M_{m \pi}-T_{0}$-space and (1,2)*- $M_{m \pi}-$ regular. If $x, y \in X, x \neq y$, there exists $\mathrm{U} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{O}(\mathrm{X})$ such that U contains one of x and y , say x but not y . Then $\mathrm{X} \backslash \mathrm{U}$ is $(1,2)^{*}-M_{m \pi}$-closed and $x \notin X \backslash U$. Since X is $(1,2)^{*}-M_{m \pi}$-regular, there exist disjoint $(1,2)^{*}$ $M_{m \pi}$-open sets V_{1} and V_{2} such that $x \in V_{1}$ and $X \backslash U \subset V_{2}$. Thus $x \in V_{1}$ and $y \in V_{2}, V_{1} \cap V_{2}=\varphi$. Hence X is $(1,2) *-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{2}$-space.

4. $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-NEIGHBOURHOOD AND $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$ - ACCUMULATION POINTS

Definition 4. 1. A subset N of X is said to be (1,2)*- $M_{m \pi}$-neighbourhood of a point $x \in$ X if there exist $(1,2)^{*}-M_{m \pi}$-open set G of X such that $x \in G \subseteq N$.
Example 4. 2. Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau_{1}=\{\varphi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\}\}$ and $\tau_{2}=\{\varphi, \mathrm{X},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$. Here $\{\varphi, X,\{a\},\{b\},\{a, c\},\{b, c\}\}$ are $(1,2)^{*}-M_{m \pi}$-open sets in X. Then, $\{b\},\{a, b\},\{b, c\}$ and X are (1, 2)*- $M_{m \pi}$-neighbourhood of $\{b\}$.
Theorem 4. 3. Let X be a biminimal space. If $N \subseteq M$ and N is (1, 2)*- $M_{m \pi}$-neighbourhood of a point x , then M is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-neighbourhood of a point x .
Proof. Suppose that $\mathrm{N} \subseteq \mathrm{M}$ and N is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-neighbourhood of a point x . Thus there exists $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open set G of X such that $\mathrm{x} € \mathrm{G} \subseteq \mathrm{N}$. By assumption, we have $\mathrm{N} \subseteq \mathrm{M}$. The theorem is now complete.

Theorem 4. 4. Let X be a biminimal space, G be any subset of X and $x \in X$. G is (1,2)*- $M_{m \pi}$ open set of X if and only if G is $(1,2)^{*}-M_{m \pi}$-neighbourhood of x for any $x \in G$.
Proof. Let X be a biminimal space, G be any subset of X and $x \in X$.
Suppose that G is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open set of X .
Case 1. If $G=\varphi$, it is clear.
Case 2. If $G \neq \varphi$, let $x \in G$. Since G is $(1,2)^{*}-M_{m \pi}$-open and $G \subseteq G$, G is $(1,2)^{*}-M_{m \pi}-$ neighbourhood of x

Conversely, suppose that G is $(1,2)^{*}-M_{m \pi}$-neighbourhood of x for any $x \in G$. Now, we would like to show that G is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open. Since $\mathrm{x} \in \mathrm{G}$ and G is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-neighbourhood of x , there exists $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open set U_{x} such that $\mathrm{x} \in \mathrm{U}_{\mathrm{x}} \subseteq \mathrm{G}$ and so $\{\mathrm{x}\} \subseteq \mathrm{U}_{\mathrm{x}} \subseteq \mathrm{G}$. It follows that,
$\mathrm{G}=\bigcup_{x \in G}\{x\} \subseteq \bigcup_{x \in G} U_{x} \subseteq \bigcup_{x \in G} G=\mathrm{G}, \mathrm{G}=\bigcup_{x \in G} U_{x}$
Since U_{x} is $(1,2)^{*}-M_{m \pi}$-open for any $x \in G$ and by Theorem 3. 7[8], we have G is $(1,2)^{*}$ $\mathrm{M}_{\mathrm{m} \pi}$-open set of X .

Theorem 4. 5. For a space X , the following statements are equivalent.

1. X is $(1,2)^{*}-\mathrm{M}_{\mathrm{mr}}-\mathrm{T}_{2}$.
2. If $x \in X$, then for each $y \neq x$, there is an $(1,2)^{*}-M_{m \pi}-$ neighbourhood $N(x)$ of x, such that y $\notin(1,2)^{*}-\mathrm{M}_{\mathrm{mr}}-\mathrm{cl}(\mathrm{N}(\mathrm{x}))$.
3. For each $\mathrm{x} \in\left\{(1,2)^{*}-\mathrm{M}_{\mathrm{mr}}-\mathrm{cl}(\mathrm{N})\right.$: N is an (1,2)*- M_{mr}-neighbourhood of x$\}=\{\mathrm{x}\}$.

Proof. $1=>2$: Let $\mathrm{x} \in \mathrm{X}$. If $\mathrm{y} \in \mathrm{X}$ is such that $\mathrm{y} \neq \mathrm{x}$, there exist disjoint $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open sets U, V such that $\mathrm{x} \in \mathrm{U}$ and $\mathrm{y} \in \mathrm{V}$. Then $\mathrm{x} \in \mathrm{U} \subseteq \mathrm{X}-\mathrm{V}$ which implies that $\mathrm{X}-\mathrm{V}$ is an $(1,2)^{*}$ $M_{m \pi}$-neighbourhood of x. Also $X-V$ is $(1,2)^{*}-M_{m \pi}$-closed and $y \notin X-V$. Let $N(x)=X-V$. Then $\mathrm{y} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\mathrm{N}(\mathrm{x}))$.

2 => 3: Obvious.
$3 \Rightarrow 1$: Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq \mathrm{y}$. By hypothesis, there is atleast an $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-neighbourhood N of x such that $\mathrm{y} \notin(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\mathrm{N})$. We have $\mathrm{x} \notin \mathrm{X}-(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\mathrm{N})$ is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open. Since N is an $(1,2)^{*}-M_{m \pi}$-neighbourhood of x, there exists $U \in(1,2)^{*}-M_{m \pi}-O(X)$ such that $x \in$ $\mathrm{U} \subseteq \mathrm{N}$ and $\mathrm{U} \cap\left(\mathrm{X}-(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{cl}(\mathrm{N})\right)=\varphi$. Hence X is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\mathrm{T}_{2}$.

Definition 4. 6. A point x of X is called a $(1,2)^{*}-M_{m \pi}$-accumulation point of a subset A of X if $G \cap(A-\{x\}) \neq \varphi$ for any $(1,2)^{*}-M_{m \pi}$-open set G in X such that $x \in G$.

We denote the set of all $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-accumulation point of A by $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}$ (A).
Example 4. 7. In Example 4. 2, $\{3\}$ is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-accumulation point of X and $(1,2)^{*}$ $\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{X})=\{3\}$.

Lemma 4. 8. Let X is a biminimal space and A, B be a subset of X. If $A \subseteq B$, then (1,2)*$\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{A}) \subseteq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{B})$.

Proof. Let $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{x} \in(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{A})$. Then for any $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-$ open set G in X such that $x \in G, G \cap(A-\{x\}) \neq \varphi$. Since $A-\{x\} \subseteq B-\{x\}$ and $\operatorname{so} \varphi \neq G \cap(A-\{x\}) \subseteq G \cap(B$ $-\{x\})$. Hence $x \in(1,2)^{*}-M_{m \pi}-\operatorname{acc}(B)$.

Theorem 4. 9. Let X be a biminimal space and A, B be a subset of X. Then (1,2$)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-acc $(\mathrm{A} \cap \mathrm{B}) \subseteq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{A}) \cap(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{B})$.

Proof. Let $\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{A}, \mathrm{A} \cap \mathrm{B} \subseteq \mathrm{B}$ and Lemma 4. 8, we obtain that (1,2)*- $\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{A} \cap \mathrm{B})$ $\subseteq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{A})$ and $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{A} \cap \mathrm{B}) \subseteq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{B})$. Therefore, (1, 2) ${ }^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{A} \cap \mathrm{B}) \subseteq(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{A}) \cap(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{B})$.

Theorem 4. 10. Let X be a biminimal space and A, B be a subset of X. A is (1,2)*- $M_{m \pi}-$ closed set of X if and only if $(1,2)^{*}-M_{m \pi}-\operatorname{acc}(A) \subseteq A$.

Proof. Let X be a biminimal space and $\mathrm{A} \subseteq \mathrm{X}$.
Assume that A is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-closed set of X . Suppose that $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{A}) \nsubseteq \mathrm{A}$. Thus there exists $x \in(1,2)^{*}-M_{m \pi}-\operatorname{acc}(A)$, but $x \notin A$. Since $x \in(1,2)^{*}-M_{m \pi}-\operatorname{acc}(A), G \cap(A-$ $\{x\}) \neq \varphi$ for any $(1,2)^{*}-M_{m \pi}$-open set G in X such that $x \in G$. Since $x \notin A, G \cap A=G \cap(A-$ $\{\mathrm{x}\}) \neq \varphi$ for any $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}$-open set G in X such that $\mathrm{x} \in \mathrm{G}$. By assumption, we get $\mathrm{X}-\mathrm{A}$ is $(1,2)^{*}-M_{m \pi}$-open and $x \in X-A$. It follows that $(X-A) \cap A \neq \varphi$, this is contradiction. Therefore, $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{A}) \subseteq \mathrm{A}$.

Conversely, Assume that $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-\operatorname{acc}(\mathrm{A}) \subseteq \mathrm{A}$. Next we would like to show that A is $(1$, 2)*- $M_{m \pi}$-closed set of X, i. e., we must to show that $X-A$ is $(1,2)^{*}-M_{m \pi}$-open set of X.

Case 1. If $X-A=\varphi$, then A is $(1,2)^{*}-M_{m \pi}$-closed set of X.
Case 2. If $X-A \neq \varphi$. Let $x \in X-A$. Thus $x \notin A$. Since $(1,2)^{*}-M_{m \pi}-\operatorname{acc}(A) \subseteq A, x \notin(1,2)^{*}-$
$M_{m \pi}-\operatorname{acc}(A)$. Thus there exists (1, 2)*- $M_{m \pi}$-open set G in X such that $x \in G$ and $G \cap(A-$ $\{x\})=\varphi$. Since $x \notin A, G \cap A=G \cap(A-\{x\})=\varphi$ and we also have $x \in G \subseteq(X-A)$. Thus X -A is $(1,2)^{*}-\mathrm{M}_{\mathrm{m} \pi}-$ neighbourhood of x . By Theorem 4. 4, we can imply that $\mathrm{X}-\mathrm{A}$ is $(1,2)^{*}$ $\mathrm{M}_{\mathrm{m} \pi}$ - open set of X . Consequently A is (1,2)*- $\mathrm{M}_{\mathrm{m} \pi}$-closed set of X.

REFERENCES

1. Ashish Kar and Paritosh Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc. 82(1990), 415-422.
2. S. Athisaya Pomona and M. Lellis Thivagar, Another form of separation Axioms, Methods of Functional Analysis and Topology, Vol. 13(2007), no.4, pp. 380-385.
3. M. Caldas and S. Jafari, On some low separation axioms in topological spaces, Houston Journal of Math., 29 (2003), 93-104.
4. M. Caldas, S. Jafari, S. A. Ponmani and M. Lellis Thivagar, On some low separation axioms in bitopological spaces, Bol. Soc. Paran. Mat.(3s) v. 24 1-2(2006);69-78.
5. A. S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Soc., 68 (1961), 886-893.
6. S.N. Maheswari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89(1975), 395-402.
7. S. N. Maheswari and R. Prasad, On R_{0}-spaces, Portugal Math., 34(1975), 213-217.
8. K. Mohana and I. Arockiarani, (1, 2)*- $\mathrm{M}_{\mathrm{m} \pi}$-Closed sets In Biminimal Spaces (Communicated).
9. M. G. Murdeshwar and S. A. Naimpally, R_{1}-topological spaces, Canad. Math. Bull., 9 (1996), 521-523.
10. S. A. Naimpally, On R_{0}-topological spaces, Ann. Univ. Sci. Budapest. E"otv"os Sect. Math. 10 (1976), 53-54.
11. T. Noiri, $11^{\text {th }}$ meeting on topological spaces and its Applications, Fukuoka University Seminar House, 2006, 1-9.
12. V. Popa and T. Noiri, On M-continuous functions, Anal. Univ "Dunarea de Jos " Galati, Ser. Mat. Fiz. Mec. Tecor. (2), 18(23) (2000), 31-41.
13. O. Ravi, R. G. Balamurugan and M. Balakrishnan, On biminimal quotient mappings, International Journal of Advances in Pure and Applied Mathematics, 1(2) (2011), 96-112.
14. O. Ravi, R. G. Balamurugan and M. Krishnamoorthy, Decompositions of $\mathrm{M}^{(1,2)^{*}}$-continuity and Complete $\mathrm{M}^{(1,2)^{*}}$-continuity In Biminimal Spaces, International Journal of Mathematical Archive, 2(11) (2011), 2299-2307.
15. N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk SSSR, 38 (1943), 110-113.
16. C.-T. Yang, "On paracompact spaces," Proc. Amer. Math. Soc., vol. 5, pp. 185189, 1954.
