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1. INTRODUCTION

The concept of minimal structure (briefly m-structure) was introduced by V. Popa and
T. Noiri [12] in 2000. Also they introduced the notion of myx-open set and mx-closed set and
characterize those sets using mx-closure and mx- interior operators respectively. Further they
introduced M-continuous functions and studied some of its basic properties. The separation
axioms Rp and R; were introduced and studied by N. A. Shanin [15] and C. T. Yang [16]. In
1963, they were rediscovered by A. S. Davis [4]. In literature, [1, 2, 3,4, 6,7, 9, 10, 11, 12]
many authors introduced various separation axioms. Recently, Ravi et al [13, 14] studied 7y, »-
open sets in biminimal spaces. In this paper we introduce and study some separation axioms

in a biminimal structure space.
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2. PRELIMINARIES

We recall the following definitions which are useful in the sequel.

Definition: 2. 1. [5] Let X be a non-empty set and p(X) the power set of X. A sub family my
of p(X) is called a minimal structure (briefly m-structure) on X if e my and Xe my.
Definition: 2. 2. [13] A set X together with two minimal structures m,' and m,’ is called a
biminimal space and is denoted by (X, m,*, m,?).

Throughout this paper, (X, m,*, m,?) (or X) denote biminimal structure space.

Definition: 2. 3. [13] Let 'S be a subset of X. Then S is said to be m,™ ?"-open if SSAUB

where Aem,'and Bem,2. The complement of m,?"-open set is called m* ?*-closed set.
The family of all m,™?"-open (resp. m,* 2"-closed) subsets of X is denoted by
m, & 2"-0(X) (resp. mt 2*-C(X)).
Definition: 2. 4. [13] Let S be a subset of X. Then
1. the m, ?"-interior of S denoted by m,*?"-int(S) is defined by U{G: Gc=Sand Gis
m, ?"-open}.
2. the m,® ?"-closure of S denoted by m,*2"-cI(S) is defined by N {F: ScF and Fis

m,* 2”-closed}.
Definition: 2.5.[14] A subset A of X is called regular -m, ®?*-open if A= m,® ?™-int
(m® 2"-cl (A)).

Definition 2. 6. [8] The finite union of regular -m, ™ ?"-open set in X is called m, ® 2"

-m-0pen set.

Definition 2. 7. [8] A subset A of X is said to be m™?"-ng-closed set if m®?"-cl (A)c G

1 2

whenever AcG and G is m 2" --open set. The complement of an m™ #”-rg-closed set is called

m® ?*_rg-open set.
The family of all m™® 2"-zg-open (resp. m® ?"-rg-closed) subsets of X is denoted by m 2"
ng-0O(X) (resp. m* 2"-zg-C(X)).

Definition 2. 8. [8] A subset A of X is said to be (1, 2)*- My-closed set if m&?"-cl (A)c G
whenever AcG and G is m™" ?"-ng-open set. The complement of an (1, 2)*- M,.-closed set is
called a (1, 2)*- M,.-0open set in X.

The family of all (1, 2)*- Mp,.-open (resp. (1, 2)*- M-closed) subsets of X is denoted by (1,
2Y%- Myy-O(X) (resp. (1, 2)*- My-C(X)).
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3. (1, 2)*- Mu.- SEPARATION AXIOMS:

Definition 3. 1. The union of all (1, 2)*- M,.-0pen sets in a biminimal space X, which are
contained in a subset A of X is called the (1, 2)*- M-interior of A and is denoted by

(1, 2)*- Mp-int (A).

Definition 3. 2. The (1, 2)*- My.-closure of A of X is the intersection of all (1, 2)*- M-

closed sets that contains A and is denoted by (1, 2)*- My:-cl (A).

Definition 3. 3. A biminimal space X is called (1, 2)*- My, -To (resp. m® 2"~ g -T) space

if for any two distinct points X, y in X, there exists a (1, 2)*- My, — open (m® 2"~ g —open)

set containing only one of x and y but not the other.

Clearly, every (1, 2)*- My -To Space is a m 2" ng -To space, since every (1, 2)*- My —

open set is am 2" g —open set. The converse is not true in general.

Example 3.4. Let X ={a, b, c}, u = {o, X, {b}, {a,b}} and 12 = {0, X, {b, c}}. Then

m &2 -ng0(X) = {9, X, {a}, {b}, {c}, {a, b}, {a, ¢}, {b,¢}} and (L, 2)* Mux-O(X) = {0, X,
{b}, {a, b}, {b, c}}. Therefore, X is m 2" g T, but not (1, 2)*- My, -To Space.

Theorem 3. 5. If (1, 2)*- My, -closures of distinct points are distinct in any biminimal space

X, then itis (1, 2)*- My -To.

Proof. Let x, ye X, x #y. By the hypothesis, (1, 2)*- M, —l ({x}) # (1, 2)*- M, —l ({y}).
Then, there exists a point z € X such that z belongs to exactly one of the two sets, say (1, 2)*-
Mz —¢l ({y}) but not to (1, 2)*- My —cl ({x}). If y € (1, 2)*- M, —cl ({x3}), then (1, 2)*- My, —
cl {y}) < (1, 2)*- My —cl ({x}) which implies z € (1, 2)*- M,z —l ({X}), a contradiction. So y
e X - (1, 2)*- My —cl ({x}), a (1, 2)*- My, —open set which does not contain x. This shows that
X is (1, 2)*- Mz —To.

Theorem 3. 6. In any biminimal space X, (1, 2)*- Mp, -closures of distinct points are distinct.
Proof. Let x, ye X, x#y. Case (a): {x}is m, & 2" -closed. Then {x} is (1, 2)*- My, -closed.
Now y # x implies y & {x} = (1, 2)*- My -l ({x}). Hence (1, 2)*- M —cl ({y}) # (1, 2)*- My —
cl ({x3). Case (b): {x} is not m," 2" -closed. Then X- {x} is not m,**?" - open and therefore, X is
only m,™ 2" -open set containing X — {x}. Hence X — {x} is (1, 2)*- My,; —closed set. Now y €
X- {x} implies (1, 2)*- M, -cl {y}) < X —{x}. Hence x ¢ (1, 2)*- M, —cl ({y}) and (1, 2)*-
M —cl ({y}) # (1, 2)*+ Munz —¢l ({X3).

Theorem 3. 7. Every biminimal space is (1, 2)*- My, - To.

Proof. Follows from Theorem 3. 5. and Theorem 3. 6.
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Definition 3. 8. A biminimal space X is called a (1, 2)*- My, -Co space if for any two
distinct points x, y in X, there exists a (1, 2)*- My, -open set such that (1, 2)*- My, —l (G)
contains one of x and y, but not the other.

Theorem 3. 9. If a biminimal space X is (1, 2)*- M, - Co thenitis (1, 2)*- My, —To.

Proof. Let X be (1, 2)*- M, - Co and x, y € X with x #y. Then there exists a (1, 2)*- M, —open

set G of X such that x € (1, 2)*- My, —cl (G) and y & (1, 2)*- M, —l(G). Since G is (1, 2)*- My,
—open, (1, 2)*- My —l (G) is also (1, 2)*- My, —open. Moreover X € (1, 2)*- My, —l (G) and y
& (1, 2)*- My, —l (G). Hence X is (1, 2)*- Mpy, -To.

Definition 3. 10. A biminimal space X is said to be (1, 2)*- My, -T1 if for any two distinct
points X, y in X, there exists a pair of (1, 2)*- M., —0pen sets, one containing X but not y and the
other containing y but not x.

Definition 3. 11. A biminimal space X is said to be (1, 2)*- My, -C; if for any two distinct points
X, y in X, there exists U, V € (1, 2)*- My, —O(X), such that (1, 2)*- My, —cl (U) containing x but
not y and (1, 2)*- My, —cl (V) containing y but not x.

Remark 3. 12.

1. Every (1, 2)*- M, -T1 space is (1, 2)*- Mp, -To.

2. Every (1, 2)*- M, -Cq space is (1, 2)*- My —T1.

3. Every (1, 2)*- My, -Cy space is (1, 2)*- My —Co.

But the converses are not true in general as illustrated in the next example.

Example 3. 13.

1. LetX={a,b,c}, 1= {0, X, {b}} and 1,= {0, X, {c}}. Then (1, 2)*- M,,,-O(X) = {0, X, {b},

{c}, {b, c}}. ltis clear that, X is (1, 2)*- M, -To, but not (1, 2)*- M,,. —T; space.
2. LetX={a,b,c},1=1{0, X, {a}} and 1= {¢, X, {b}}. Then (1, 2)*- M,,-O(X) = {0, X,
{a}, {b}, {a, b}}. Here X'is (1, 2)*- M,z -To, but not (1, 2)*- M., —Co Space.
3. LetX={a b,c,d}, 1= {0, X, {a}, {b}} and 1. = {o, X, {a, b, d}}. Then (1, 2)*- M-
O(X) = {0, X, {a}, {b}, {a, b}, {a, b, d}}. Then, X is (1, 2)*- My, —Cy, but not (1, 2)*- Mz
—C; space.
Theorem 3. 14. In a biminimal space X, the following statements are equivalent.

1. Xis (1, 2)*- My, - T,

2. Each one point set is (1, 2)*- My, -closed set in X.
Proof. (1) => (2). Let X be (1, 2)*- My, -T1 and x € X. Suppose (1, 2)*- My, —¢l ({x}) # {x}.
Then we can find an element y € (1, 2)*- M, —cl({x}) with y #x . Since X is (1, 2)*- Mz —T1,
there exist (1, 2)*- M, —open sets U and V such thatx e U, ygU andy € V, xZ V. Now x €
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V© and V© is (1, 2)*- M —closed set. Therefore, (1, 2)*- M —cl ({x}) < V© which implies y
€ V©, a contraction. Hence, (1, 2)*- Mz —cl ({x}) = {x} or {x} is (1, 2)*- M, —closed.

(2) => (1). Letx, ye X and x #y. Then {x} and {y} are (1, 2)*- M,,, —closed. Therefore, U =
(YD and V= ({x})° are (1, 2)*- M, —openand x €U,y ¢U andy €V, x ¢ V. Hence

is (1, 2)*- My -T1.

Definition 3. 15. A biminimal space X is called a (1, 2)*- My, - T, space if for any two

distinct points x, y in X, there exists a pair of disjoint (1, 2)*- M,,, —open sets U and V such
thatx eUandy eVandU NV = o.

Definition: 3. 16 A function f: X—Y is called (1, 2)*-M-irresolute if the inverse image of

every (1, 2)*-M-closed set in Y is (1, 2)*-M,-closed set in X.
Theorem 3. 17. If f: X — Y is an injective, (1, 2)*- My, -irresolute function and Y is
(1, 2)*- My, -T2 then Xis (1, 2)*- My, -To.
Proof. Let x, y € X and x #y. Since fis injective, f(x) # f(y) in Y and there exist disjoint (1, 2)*-
M. -open sets U, V such that f(x) € U and f(y) € V. Let G=f *(U) and H=f (V). Then xe G, y
eHand G, H €(1, 2)*- M -O(X). Also G N H=f(U) N £ (V) =f (U NV)=¢. Thus X is
(1, 2)*- M, -To.
Theorem 3. 18. If f: X — Y is an injective, (1, 2)*- My, -irresolute function and Y is
(1, 2)*- Mz —T1 then X is (1, 2)*- My —T1.
Proof. The proof is similar to the above theorem.
Remark 3.19. Every (1, 2)*- My, —T2 space is (1, 2)*- My, —T1.
Definition 3. 20. A biminimal space X is called a (1, 2)*- M., —Ro space if for each (1, 2)*-
M —open set G, X € G, implies (1, 2)*- My, —¢l ({x}) < G.
Theorem 3. 21 : For any biminimal space X, the following are equivalent:
1. Xis (1, 2)*- Mu-Ro.
2. Fe(l, 2)* My~C(X)and x ¢F=>F cUand x ¢U for some U (1, 2)*- My~
O(X).
3. Fe(@,2)* My~C(X)and x F =>F N (1, 2)*- Mpz-cl ({x}) = 0.
4. For any two distinct points x, y of X, either (1, 2)*- Mp-cl ({x}) = (1, 2)*- Myl
({y}) or (1, 2)*- Mur-cl ({x}) N (1, 2)*- Muz-cl ({y}) = o.
Proof. 1 =>2: F €(1, 2)*- Mp,r-C(X) and x ¢F =>x € X\ F € (1, 2)*- M;,,-O(X) =>
(1, 2)*- Mpg-cl {x3) < X\ F (by (1)). Put U = X\ (1, 2)*- Myq-cl ({x3}). Then x ¢U e (1,
2)*- Mip-O(X) and F < U.
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2=>3: F €(1, 2)*- Myu-C(X) and x ¢ F => there exists U € (1, 2)*- M,,,-O(X) such that x
gUand F C U (by (2))=>U N (1, 2)*- Mp-cl {x}) = ¢ =>F N (1, 2)*- Myz-cl ({X}) = ¢.

3=> 4: Suppose that for any two distinct points X, y of X, (1, 2)*- Mmz-cl ({x}) # (1, 2)*-
Mumz-cl ({y}). Then suppose without any loss of generality that there exists some z € (1, 2)*-
Muz-cl ({X}) such that z & (1, 2)*- My.-cl ({y}). Thus there exists V € (1, 2)*- My,~O(X)
such that z eV and ygV but xe V. Thus x& (1, 2)*- My.-cl ({y}). Hence by (3), (1, 2)*-
Mug-cl ({x}) N (1, 2)*- Muz-cl ({y}) = .

4=>1: Let Ue (1, 2)*- My-O(X) and x €U. Then for each y €U, x & (1, 2)*- Mp,-cl
(YD Thus (1, 2)*- Muz-cl ({x}) # (1, 2)*- Mimz-cl ({y}). Hence by (4), (1, 2)*- Muz-cl ({X})

N (1, 2)*- Mug-cl ({y}) = ¢, for each y € X \ U. So (1, 2)*- Muz-cl ({x}) N [ U {(1, 2)*-
Mmzcl {y}) iy eX\U} =@ cceono.n..... (1).

Now, U€E (1, 2)*- Mp-O(X) and y € X\ U => {y} < (1, 2)*- Mi—cl {y}) < (1, 2)*- M-

cl (X\U) =X \U.Thus X\U =U {(1, 2)*- Mp-cl ({y}) : y € X\ U}. Hence from (i), (1,
2)*- Mpz-cl ({x}) N( X\ U) =0 => (1, 2)*- Mpua-cl ({x}) < U, showing that X is

(1, 2)*- Mp-Ro.

Definition 3. 22. A biminimal space X is called a (1, 2)*- M., —R; space if for any two

distinct points x, y in X, with (1, 2)*- Mp, -cl ({x}) # (1, 2)*- M, —l ({y}), there exists pair

of disjoint (1, 2)*- My, —open sets U and V such that (1, 2)*- M, —cl ({x}) < U and (1,

2)*- Moz ¢l ({y}) < V.

Theorem 3. 23. Every (1, 2)*- My, —R; biminimal space is (1, 2)*- My —Ro.

Proof. Let X be (1, 2)*- M, —R; and let G be a (1, 2)*- M,,, —open set containing x. If (1, 2)*- My,
—cl ({x}) & G then there exists an element y € (1, 2)*- My —cl ({x}) N G. Since G is (1, 2)*- Mz
—closed, (1, 2)*- Mz —cl ({y}) < G Now (1, 2)*- Muz —cl ({x}) # (1, 2)*- Mz —cl ({y}) and X is
(1, 2)*- My —R1. Hence there exists disjoint (1, 2)*- My, —open sets containing (1, 2)*- M, —l
({x}) and (1, 2)*- M., —l ({y}) respectively. This is not possible, since y € (1, 2)*- My, —l ({x})
N(1, 2)*- Mz —cl ({y}).

Theorem 3. 24. Let X be a biminimal space. Then X is (1, 2)*- My, -Ro if and only if for

every (1, 2)*- Mp, -closed set K and x & K, there exists a (1, 2)*- My, -open set S such that

K cSandx ¢S.

Proof. Necessity. Let X be a (1, 2)*- My, -Ro space and K be a (1, 2)*- M, -closed subset

such that x ¢ K. We have X \ K is (1, 2)*- My, -open and x € X \ K. Since X is (1, 2)*- My,
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-RO, then (1, 2)*- My, -l ({x}) < X\ K. We obtain K < X\ (1, 2)*- My, -cl ({x}). Take S

=X\ (1, 2)*- My, -cl ({x}). Thus, Sis a (1, 2)*- My, -open set such that K < Sand x ¢S.
Sufficiency. Let S be a (1, 2)*- My, -open set and x € U. Then X\ Sisa (1, 2)*- My, -closed
setand x ¢ X \' S. Then there exists a (1, 2)*- My, -open subset U such that X\ S < U and

x¢ U. We obtain X \U < Sand x € X\ U. Since X\ U is a (1, 2)*- My, -closed set, then

(1, 2)*- My, -cl ({x})< X\ U < S. Hence, X is a (1, 2)*- My -Ro space.

Theorem 3. 25. Let X be a biminimal space. Then Xis (1, 2)*- My, — Ty ifand only if it is a (1, 2)*-
Mz — To and (1, 2)*- Moz — Ro.

Proof. Let X be a (1, 2)*- My, — T1 space. By the definition of (1, 2)*- My, — T1 Space, itis a (1, 2)*-
Mz — To and (1, 2)*- M, — Ro space.

Conversely, let X be a (1, 2)*- M, — Tospace and (1, 2)*- M, — Ro Space. Let X, y be any two
distinct points of X. Since X is (1, 2)*- M,z — To, then there exists a (1, 2)*- My, — open set U such
that x e U and y ¢ U or there exists a (1, 2)*- My, —open set V such thaty e Vandx ¢ V. Letx €
Uand y ¢ U. Since X is (1, 2)*- Mz — Ro, then (1, 2)*- My, —¢l ({x}) < U. We have y¢& U and
theny & (1, 2)*- M, —cl ({x}). We obtainy € X\ (1, 2)*- My, — cl ({x}). Take S = X\ (1, 2)*- M,
—cl ({x}). Thus, U and S are (1, 2)*- M,,; —open sets containing X and y, respectively, such thaty ¢
Uand x ¢S. Hence, Xis (1, 2)*- My; — T1.

Theorem 3. 26. Let X be a biminimal space. Then X is a (1, 2)*- My -Ro space if and only if for
any xand y in X, (1, 2)*- My; —cl({x}) # (1, 2)*- M, —cl({y}) implies (1, 2)*- M, —l({x}) N (1,
2)*- Mz —cl({y}) = 0.

Proof. Let X be (1, 2)*- Mz -Ro and x, y € X such that (1, 2)*- My, —l ({x}) # (1, 2)*- My —l
({y}). Then, there exista k € (1, 2)*- My, —l ({x}) such that k & (1, 2)*- My, —cl ({y}) (or k € (1,
2)*- Mz —Cl ({y}) such that k & (1, 2)*- My, —cl ({x}) and then there exists V € (1, 2)*- My, —
O(X) suchthaty ¢V and k €V and hence x € V. Thus, X & (1, 2)*- My, —¢l ({y}) and x € X\ (1,
2)*- Mz —¢l {y}) € (1, 2)*- M —O(X). We have (1, 2)*- My —cl ({x}) < X\ (1, 2)*- M, —l
({y}) and (1, 2)*- Mz —cl ({x}) N (1, 2)*- Mz —Cl ({y}) = 0.

Conversely, Let Ve (1, 2)*- M, —O(X) and x € V. Lety ¢ V. We havey € X\ V. Then x #y and
X & (1, 2)*- My —cl({y}). We obtain (1, 2)*- M, —l({x}) # (1, 2)*- M —cl({y}) and then (1, 2)*-
Moz —cl({x}) N (1, 2)*- Mz —cl({y}) =@. Thus, y & (1, 2)*- Mu: —cl({x}) and then (1, 2)*- My —
cl({x}) < V. We obtain that X is a (1, 2)*- M, — Ro Space.

Theorem 3. 27. Let X be a biminimal space. Then the following properties

are equivalent:

1. Xisa(1, 2)*- M- -Ro space.
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2. X €(1,2)* Mn.-cl {y}) ifand only if y €(1, 2)*- M, -cl ({x}) for any points x and y in X.
Proof. 1 =>2. Let X be (1, 2)*- My -Ro. Let X € (1, 2)*- My, -l ({y}) and S be any (1, 2)*-
M —0pen set such thaty €S. By (1), X €S. Hence, every (1, 2)*- My, -open set which
contains y contains x and then 'y € (1, 2)*- Mp, -cl ({x}).
2=>1.LetUbea(l, 2)*- My, -opensetand x eU. Ify ¢ U, then x & (1, 2)*- My -cl {y})
and hence y & (1, 2)*- My, -cl ({x}). We have (1, 2)*- My, -cl ({x}} < U. Thus, Xis (1, 2)*- My -Ro.
Theorem 3. 28. The following are equivalent in a biminimal space X.

1. X is (1, 2)*- My -Ta.

2. X is(1, 2)*- Mz —Ryand (1, 2)*- My, —T1.

3. X is(1, 2)*- My —R; and (1, 2)*- My —To.

Proof. 1=>2: X is (1, 2)*- My, —T> implies X is (1, 2)*- M, —T; and therefore by Theorem
3. 11, every singleton set in X is (1, 2)*- M,z —closed. Let X, y € X and x #y. Since X is (1,
2)*- M -To, there exist two disjoint (1, 2)*- My, —open sets U and V containing x and y
respectively. Since {x} and {y} are (1, 2)*- My,-closed, X is (1, 2)*- M, —R.
2 => 3: This is obvious, since X is (1, 2)*- My, —T1 implies X is (1, 2)*- My, —To.
3=>1:Letx,y eXandx#y.
Case (a). (1, 2)*- My —l ({x}) # (1, 2)*- My —cl ({y}). Since X is (1, 2)*- My, —R3, there
exist two disjoint (1, 2)*- My, —open sets U and V such that U o (1, 2)*- M, —cl ({x}) and
V o (@1, 2)* My —cl {y}). Thenx eUandy € V.
Case (b). (1, 2)*- My —cl ({x}) = (1, 2)*- My, —cl ({y}). Since x #y and X is (1, 2)*- My; —
To, there exists a (1, 2)*- M, —open sets U containing X but noty. Theny € U°, a (1, 2)*-
Mz —closed set. This implies (1, 2)*- M. —cl ({y}) < U° and therefore (1, 2)*- My, —cl
({x}) < U° orx €U, which is a contradiction. Hence case (b) is not possible.
Theorem 3. 29. Let X be any biminimal space. Then the following are equivalent.
1. X is (1, 2)*- My —R; space.
2. Foranyx,y €X, one of the following holds:
I ForU € (1, 2)*- M, -O(X),x €U iffy € V.
ii. There exists disjoint (1, 2)*- M, —open sets U and V such thatx e U,y € V.

3. If x,y €Xsuch that (1, 2)*- M, —cl ({x}) # (1, 2)*- Mu —l ({y}), then there exists

(1, 2)*- My, —closed sets F; and F, such thatxe Fi,y € Fi,y € Fo,x € Frand X =
F1 U F..

Proof. 1=>2: Letx,y €X. Then (1, 2)*- M, —¢l ({x}) = (1, 2)*- M, —l ({y}) or (1, 2)*-
an —cl ({X}) 75 (11 2)*' an —cl ({y}) If (11 2)*' Mmrr —cl ({X}) = (11 2)*' an —cl ({y}) and
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U e(1, 2)*- My —O(X), thenx e U =>y (1, 2)*- M —Cl{y}) = (1, 2)*- M, —cl({x})
c U (as X is (1, 2)*- Mz —Ro). If (1, 2)*- My, —cl({x}) # (1, 2)*- M, —l({y}), then there
exists U, V € (1, 2)*- My, —O(X) such that x € (1, 2)*- My —Ccl({X}) < U,y € (1, 2)*- My
—l{y}) cVandUNV=yg.
2 =>3: Let x, y € X such that (1, 2)*- M, —l({x}) # (1, 2)*- My —cl({y}). Then x & (1, 2)*-
Mz —Cl({y}), so that there exists G € (1, 2)*- My, —O(X) such that x e Gand y ¢ G. Thus by
[2], there exists disjoint (1, 2)*- My, —open sets U and V such that x e U,y € V. Put F; = X\
Vand F; = X\U. ThenFy, F; €(1, 2)*- My —C(X), x € Fi,y € F1, y € F, x ¢ Foand X =
Fi1UFy.
3=>1:LetU €(1, 2)*- My —O(X) and x € U. Then (1, 2)*- M -cl ({x}) < U. In fact,
otherwise there exists y € (1, 2)*- My, — cl ({x}) N (X\ U). Then (1, 2)*- My, —l ({x}) # (1,
2)*- Mz —cl ({y}) (as x & (1, 2)*- My —l ({y})) and so by [3], there exists Fy, F, € (1, 2)*-
Mu: —C(X) suchthatx € Fi,y € F;, y € F;, Xx € Foand X=F, UF,. Theny € F,\Fp = X\
Fi and x & X\ Fy, where X\ F; €(1, 2)*- My, “O(X), which is a contradiction to the fact that
ye (1, 2)*- My -cl ({x3}). Hence (1, 2)*- My, -l ({x}) < U. Thus X is (1, 2)*- My —Ro. To
show X to be (1, 2)*- M, — Ry assume that a, b € X with (1, 2)*- M, —l ({a}) # (1, 2)*- My
—cl ({b}). Then as above, there exists P, P, € (1, 2)*- My, —C(X) such thata € P, b & P1, b
€ Py, a¢g Pand X=P; UP,. Thusa € P1\Poe (1, 2)*- My, —O(X), be P,\P1e (1, 2)*- My,
—~O(X). So (1, 2)*- My, -cl ({a}) < P1\Pa. (1, 2)*- My, -cl ({b}) < P2\ P;. Thus Xis (1, 2)*-
Mz —R1 Space.
Remark 3. 30. From the above theorems and examples we have the following implications.

1. (1, 2)* Mue—To. 2. (L, 2)* Mur ~T1. 3. (1, 2)* Mz -T2 4. (1, 2)*- Mz —Co

5. (1, 2)*- Mz —C1 6. (1, 2)* Mz —Ro 7. (1, 2)*- Mz —R1.
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Definition 3. 31. A space X is said to be (1, 2)*- My, -regular for each (1, 2)*- M, -closed
set F and each point X g F there exist disjoint (1, 2)*- My, -open sets U and V such that
x€UandF CV.

Theorem 3. 32. An (1, 2)*- My -To-space is (1, 2)*- Mp,, -To-space if it is (1, 2)*- My, -
regular.

Proof. Let X be (1, 2)*- M, -To-space and (1, 2)*- My, -regular. If x, ye X, x £y, there exists
U € (1, 2)*-My,~O(X) such that U contains one of X and y, say x but not y. Then X\U is

(1, 2)*- My, -closed and x & X \ U. Since X is (1, 2)*- My, -regular, there exist disjoint (1, 2)*-
M -open sets Vi and V; such that xe Vi and X \U < V,. Thus xeViandyeV,, Vi NV =o.
Hence X is (1, 2)*- My, -T,-space.

4. (1, 2)*- My -NEIGHBOURHOOD AND (1, 2)*- M, — ACCUMULATION POINTS

Definition 4. 1. Asubset N of X s said to be (1, 2)*- My, —neighbourhood of a point x €

X if there exist (1, 2)*- My, -open set G of X such that x € G < N.

Example 4. 2. Let X = {a, b, ¢}, 11 = {0, X, {a}, {b}} and 1, = {0, X, {a, c}, {b, c}}. Here

{0, X, {a}, {b}, {a, c}, {b, c}} are (1, 2)*- My, —open sets in X. Then, {b}, {a, b}, {b, c} and
X are (1, 2)*- My, —neighbourhood of {b}.

Theorem 4. 3. Let X be a biminimal space. If N M and N is (1, 2)*- M, —heighbourhood of
a point x, then M is (1, 2)*- My, —neighbourhood of a point x.

Proof. Suppose that N M and N is (1, 2)*- M, —neighbourhood of a point x. Thus there
exists (1, 2)*- My, —open set G of X such that x € G < N. By assumption, we have N M.
The theorem is now complete.

Theorem 4. 4. Let X be a biminimal space, G be any subset of X and x € X. G is (1, 2)*- My, -
open set of X if and only if G is (1, 2)*- M., —heighbourhood of x for any x € G.

Proof. Let X be a biminimal space, G be any subset of X and x € X.

Suppose that G is (1, 2)*- M,,,, —open set of X.

Case 1. If G =g, itis clear.

Case 2. If G# o, letx €G. Since Gis (1, 2)*- My, —openand G < G, Gis (1, 2)*- My, —
neighbourhood of x

Conversely, suppose that G is (1, 2)*- My, —neighbourhood of x for any x € G. Now, we would
like to show that G is (1, 2)*- M, —open. Since x € G and G is (1, 2)*- M,,; —neighbourhood of
X, there exists (1, 2)*- My, —open set Uy suchthatx € Uy c Gandso {x} < Uy < G. It

follows that,

Volume-2 | Issue-2 | February,2016 | Paper-2 15



International Journal For Research In Mathematics And Statistics ISSN: 208-2662

G= {3V, c UG =6,6= U,

X<G X<G xG X<G
Since Uy is (1, 2)*- M, —open for any x € G and by Theorem 3. 7[8], we have G is (1, 2)*-
M —open set of X.
Theorem 4. 5. For a space X, the following statements are equivalent.
1. X is (1, 2)*- Myr-To.
2. If x € X, then for each y # x, there is an (1, 2)*- M,..-neighbourhood N(x) of X, such that y
& (1, 2)*- Mp-Cl (N(X)).

3. Foreach X € {(1, 2)*- M-cl (N): N is an (1, 2)*- M.-neighbourhood of x} = {x}.

Proof. 1 =>2: Let x € X. If y € X is such that y # x, there exist disjoint (1, 2)*- M,,-0pen sets
U,Vsuchthatx € Uandy € V. Then x € U < X -V which implies that X — V is an (1, 2)*-
Mmz-neighbourhood of x. Also X -V is (1, 2)*- M,-closed and y & X — V. Let N(x) = X - V.
Theny & (1, 2)*- Myz-cl (N(X)).

2 => 3: Obvious.

3=>1:Letx, y€ X, x#y. By hypothesis, there is atleast an (1, 2)*- M,,-neighbourhood N of
xsuch thaty € (1, 2)*- My.-cl (N). We have x & X - (1, 2)*- Myq-cl (N) is (1, 2)*- M,-0pen.
Since N is an (1, 2)*- My,.-neighbourhood of x, there exists U € (1, 2)*- M,,.-O(X) such that x €
U cNand U N(X - (1, 2)*- Mpz-cl (N)) = ¢. Hence X is (1, 2)*- M- To.

Definition 4. 6. A point x of X is called a (1, 2)*- M., —accumulation point of a subset A of

X if G N (A- {x}) # ¢ for any (1, 2)*- My, —open set G in X such that x € G.

We denote the set of all (1, 2)*- My, —accumulation point of A by (1, 2)*- My, —acc (A).
Example 4. 7. In Example 4. 2, {3} is (1, 2)*- M, —accumulation point of X and (1, 2)*-

M —acc(X) = {3}.

Lemma 4. 8. Let X is a biminimal space and A, B be a subset of X. If A < B, then (1, 2)*-
Mz —acc (A) < (1, 2)*- My, —acc (B).

Proof. Let A < B and x € (1, 2)*- My, —acc (A). Then for any (1, 2)*- M, —open set G in X
suchthat x € G, G N (A — {x}) #¢. Since A- {Xx} = B-{x}andso 9 #G N (A—-{x}) = GN (B
—{x}). Hence x € (1, 2)*- M,z —acc (B).

Theorem 4. 9. Let X be a biminimal space and A, B be a subset of X. Then (1, 2)*- M, —acc
(A N B) < (1, 2)* Mz —acc (A) N (1, 2)*- My, —acc (B).
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Proof. Let ANB — A, ANB < B and Lemma 4. 8, we obtain that (1, 2)*- M,; —acc (A N B)
< (1, 2)*- My —acc (A) and (1, 2)*- M, —acc (A N B) < (1, 2)*- M,,,, —acc (B). Therefore, (1,
2)*- Mz —ace (A N B) < (1, 2)* Mz —acc (A) N (1, 2)*- My, —acc (B).

Theorem 4. 10. Let X be a biminimal space and A, B be a subset of X. Aiis (1, 2)*- My, —
closed set of X if and only if (1, 2)*- M, —acc (A) < A.

Proof. Let X be a biminimal space and Ac X.

Assume that A is (1, 2)*- My, —closed set of X. Suppose that (1, 2)*- M, —acc (A) & A. Thus
there exists x € (1, 2)*- My, —acc (A), but x ¢ A. Since X € (1, 2)*- My —acc (A), G N (A —
{x}) # ¢ for any (1, 2)*- M, —open set G in X such that x € G. Sincex €A,GNA=G N (A-
{x})# ¢ forany (1, 2)*- M, —open set G in X such that x € G. By assumption, we get X — A is
(1, 2)*- My, —open and x € X —A. It follows that (X — A) N A # ¢, this is contradiction.
Therefore, (1, 2)*- My, —acc (A) < A.

Conversely, Assume that (1, 2)*- My, -acc (A) < A. Next we would like to show that A is (1,
2)*- My -Closed set of X, i. e., we must to show that X — A is (1, 2)*- My, —open set of X.
Case 1. If X — A =@, then A is (1, 2)*- M, —closed set of X.

Case 2. IF X—A #¢. Letx € X—A. Thus x € A. Since (1, 2)*- M, -acc (A) < A, x € (1, 2)*-
Mz -acc (A). Thus there exists (1, 2)*- My, —open set G in X such that x € Gand G N (A —
{x})=0.Sincex €A, GNA=G N (A- {x})=¢ and we also have x € G < (X —A). Thus X
—A'is (1, 2)*- My, —neighbourhood of x. By Theorem 4. 4, we can imply that X -A is (1, 2)*-
M — open set of X. Consequently A is (1, 2)*- My, —closed set of X.
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