Low Separation Axioms Via $(1, 2)^*$ -M_{m π}-Closed Sets

In Biminimal Spaces

K. Mohana¹, I. Arockiarani² and S. Jafari³

¹Assistant Professor, Department of Mathematics Nirmala College for women, Coimbatore - 641 018, India. email: mohanamaths@yahoo.co.in ²Associate Professor, Department of Mathematics. Nirmala College For women, Coimbatore-641 018, India. email: stell11960@yahoo.co.in 3Professor of Mathematics College of Vestsjaelland South Herrestraede 11, 4200 Slagelse Denmark email: jafaripersia@gmail.com

Abstract: The purpose of this paper is to introduce the concepts of $(1, 2)^*$ - $M_{m\pi}$ - T_0 space, $(1, 2)^*$ - $M_{m\pi}$ - T_1 space and $(1, 2)^*$ - $M_{m\pi}$ - T_2 space in a biminimal spaces. We study some of the characterizations and properties of these separation axioms. Further we discuss $(1, 2)^*$ - $M_{m\pi}$ - R_0 and $(1, 2)^*$ - $M_{m\pi}$ - R_1 spaces in biminimal spaces. The implications of these axioms among themselves are also investigated

Key Words & Phrases: $(1, 2)^*$ - $M_{m\pi}$ - T_0 , $(1, 2)^*$ - $M_{m\pi}$ - T_1 , $(1, 2)^*$ - $M_{m\pi}$ - T_2 , $(1, 2)^*$ - $M_{m\pi}$ - R_0 , $(1, 2)^*$ - $M_{m\pi}$ - R_1 .

2000 AMS Classification: 54E55.

1. INTRODUCTION

The concept of minimal structure (briefly m-structure) was introduced by V. Popa and T. Noiri [12] in 2000. Also they introduced the notion of m_X -open set and m_X -closed set and characterize those sets using m_X -closure and m_X - interior operators respectively. Further they introduced M-continuous functions and studied some of its basic properties. The separation axioms R_0 and R_1 were introduced and studied by N. A. Shanin [15] and C. T. Yang [16]. In 1963, they were rediscovered by A. S. Davis [4]. In literature, [1, 2, 3, 4, 6, 7, 9, 10, 11, 12] many authors introduced various separation axioms. Recently, Ravi et al [13, 14] studied $\tau_{1,2}$ -open sets in biminimal spaces. In this paper we introduce and study some separation axioms in a biminimal structure space.

2. PRELIMINARIES

We recall the following definitions which are useful in the sequel.

Definition: 2. 1. [5] Let X be a non-empty set and b(X) the power set of X. A sub family m_x

of $\mathfrak{p}(X)$ is called a minimal structure (briefly m-structure) on X if $\varphi \in \mathfrak{m}_x$ and $X \in \mathfrak{m}_x$.

Definition: 2. 2. [13] A set X together with two minimal structures m_x^{1} and m_x^{2} is called a biminimal space and is denoted by (X, m_x^{1}, m_x^{2}) .

Throughout this paper, (X, m_x^{-1}, m_x^{-2}) (or X) denote biminimal structure space.

Definition: 2. 3. [13] Let S be a subset of X. Then S is said to be $m_x^{(1, 2)^*}$ -open if $S=A \cup B$ where $A \in m_x^{-1}$ and $B \in m_x^{-2}$. The complement of $m_x^{(1, 2)^*}$ -open set is called $m_x^{(1, 2)^*}$ -closed set. The family of all $m_x^{(1, 2)^*}$ -open (resp. $m_x^{(1, 2)^*}$ -closed) subsets of X is denoted by $m_x^{(1, 2)^*}$ -O(X) (resp. $m_x^{(1, 2)^*}$ -C(X)).

Definition: 2. 4. [13] Let S be a subset of X. Then

- 1. the $m_x^{(1,2)*}$ -interior of S denoted by $m_x^{(1,2)*}$ -int(S) is defined by $\cup \{G: G \subseteq S \text{ and } G \text{ is } m_x^{(1,2)*}$ -open $\}$.
- 2. the $m_x^{(1,2)^*}$ -closure of S denoted by $m_x^{(1,2)^*}$ -cl(S) is defined by $\bigcap \{F: S \subseteq F \text{ and } F \text{ is } m_x^{(1,2)^*}$ -closed $\}$.

Definition: 2. 5. [14] A subset A of X is called regular $-m_x^{(1, 2)*}$ -open if $A = m_x^{(1, 2)*}$ -int $(m_x^{(1, 2)*}$ -cl (A)).

Definition 2. 6. [8] The finite union of regular $-m_x^{(1,2)*}$ -open set in X is called $m_x^{(1,2)*}$ - π -open set.

Definition 2.7. [8] A subset A of X is said to be $m^{(1,2)^*}-\pi g$ -closed set if $m_x^{(1,2)^*}-\operatorname{cl}(A) \subseteq G$

whenever $A \subseteq G$ and G is $m_x^{(1,2)^*}$ - π -open set. The complement of an $m^{(1,2)^*}$ - π g-closed set is called $m^{(1,2)^*}$ - π g-open set.

The family of all $m^{(1, 2)*}$ - π g-open (resp. $m^{(1, 2)*}$ - π g-closed) subsets of X is denoted by $m^{(1, 2)*}$ - π g-O(X) (resp. $m^{(1, 2)*}$ - π g-C(X)).

Definition 2. 8. [8] A subset A of X is said to be $(1, 2)^*$ - $M_{m\pi}$ -closed set if $m_x^{(1,2)^*}$ -cl (A) \subseteq G whenever A \subseteq G and G is $m^{(1,2)^*}$ - π g-open set. The complement of an $(1, 2)^*$ - $M_{m\pi}$ -closed set is called a $(1, 2)^*$ - $M_{m\pi}$ -open set in X.

The family of all $(1, 2)^*$ - $M_{m\pi}$ -open (resp. $(1, 2)^*$ - $M_{m\pi}$ -closed) subsets of X is denoted by (1, 2)*- $M_{m\pi}$ -O(X) (resp. $(1, 2)^*$ - $M_{m\pi}$ -C(X)).

3. $(1, 2)^*$ - M_{m π}- SEPARATION AXIOMS:

Definition 3. 1. The union of all $(1, 2)^*$ - $M_{m\pi}$ -open sets in a biminimal space X, which are contained in a subset A of X is called the $(1, 2)^*$ - $M_{m\pi}$ -interior of A and is denoted by $(1, 2)^*$ - $M_{m\pi}$ -int (A).

Definition 3. 2. The $(1, 2)^*$ - $M_{m\pi}$ -closure of A of X is the intersection of all $(1, 2)^*$ - $M_{m\pi}$ -closed sets that contains A and is denoted by $(1, 2)^*$ - $M_{m\pi}$ -cl (A).

Definition 3. 3. A biminimal space X is called $(1, 2)^*$ - $M_{m\pi}$ - T_0 (resp. m^{(1, 2)*}- πg - T_0) space if for any two distinct points x, y in X, there exists a $(1, 2)^*$ - $M_{m\pi}$ – open (m^{(1, 2)*}- πg –open) set containing only one of x and y but not the other.

Clearly, every (1, 2)*- $M_{m\pi}$ -T₀ space is a m ^{(1, 2)*}- π g -T₀ space, since every (1, 2)*- $M_{m\pi}$ - open set is a m ^{(1, 2)*}- π g -open set. The converse is not true in general.

Example 3.4. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{b\}, \{a, b\}\}$ and $\tau_2 = \{\phi, X, \{b, c\}\}$. Then $m^{(1,2)^*}-\pi gO(X) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $(1, 2)^*-M_{m\pi}-O(X) = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}$. Therefore, X is $m^{(1,2)^*}-\pi g - T_0$, but not $(1, 2)^*-M_{m\pi} - T_0$ space.

Theorem 3. 5. If $(1, 2)^*$ - $M_{m\pi}$ -closures of distinct points are distinct in any biminimal space X, then it is $(1, 2)^*$ - $M_{m\pi}$ -T₀.

Proof. Let x, $y \in X$, $x \neq y$. By the hypothesis, $(1, 2)^* - M_{m\pi} -cl(\{x\}) \neq (1, 2)^* - M_{m\pi} -cl(\{y\})$. Then, there exists a point $z \in X$ such that z belongs to exactly one of the two sets, say $(1, 2)^* - M_{m\pi} -cl(\{y\})$ but not to $(1, 2)^* - M_{m\pi} -cl(\{x\})$. If $y \in (1, 2)^* - M_{m\pi} -cl(\{x\})$, then $(1, 2)^* - M_{m\pi} -cl(\{x\})$ which implies $z \in (1, 2)^* - M_{m\pi} -cl(\{x\})$, a contradiction. So $y \in X - (1, 2)^* - M_{m\pi} -cl(\{x\})$, a $(1, 2)^* - M_{m\pi} -cpen set$ which does not contain x. This shows that X is $(1, 2)^* - M_{m\pi} -T_0$.

Theorem 3. 6. In any biminimal space X, $(1, 2)^* \cdot M_{m\pi}$ -closures of distinct points are distinct. **Proof.** Let x, $y \in X$, $x \neq y$. **Case (a):** {x} is $m_x^{(1, 2)^*}$ -closed. Then {x} is $(1, 2)^* \cdot M_{m\pi}$ -closed. Now $y \neq x$ implies $y \notin \{x\} = (1, 2)^* \cdot M_{m\pi}$ -cl ({x}). Hence $(1, 2)^* \cdot M_{m\pi}$ -cl ({y}) $\neq (1, 2)^* \cdot M_{m\pi}$ - cl ({x}). **Case (b):** {x} is not $m_x^{(1, 2)^*}$ -closed. Then X- {x} is not $m_x^{(1, 2)^*}$ - open and therefore, X is only $m_x^{(1, 2)^*}$ -open set containing X - {x}. Hence X - {x} is $(1, 2)^* \cdot M_{m\pi}$ -closed set. Now $y \in$ X- {x} implies $(1, 2)^* - M_{m\pi}$ -cl ({y}) \subseteq X -{x}. Hence x $\notin (1, 2)^* - M_{m\pi}$ -cl ({y}) and $(1, 2)^* - M_{m\pi}$ -cl ({y}) $\neq (1, 2)^* - M_{m\pi}$ -cl ({x}).

Theorem 3. 7. Every biminimal space is $(1, 2)^*$ - $M_{m\pi}$ -T₀.

Proof. Follows from Theorem 3. 5. and Theorem 3. 6.

Definition 3. 8. A biminimal space X is called a $(1, 2)^*$ - $M_{m\pi}$ - C_0 space if for any two distinct points x, y in X, there exists a $(1, 2)^*$ - $M_{m\pi}$ -open set such that $(1, 2)^*$ - $M_{m\pi}$ -cl (G) contains one of x and y, but not the other.

Theorem 3. 9. If a biminimal space X is $(1, 2)^*$ - $M_{m\pi}$ - C_0 then it is $(1, 2)^*$ - $M_{m\pi}$ - T_0 .

Proof. Let X be $(1, 2)^*$ - $M_{m\pi}$ - C_0 and x, y \in X with x \neq y. Then there exists a $(1, 2)^*$ - $M_{m\pi}$ -open set G of X such that $x \in (1, 2)^*$ - $M_{m\pi}$ -cl (G) and $y \notin (1, 2)^*$ - $M_{m\pi}$ -cl(G). Since G is $(1, 2)^*$ - $M_{m\pi}$ - open, $(1, 2)^*$ - $M_{m\pi}$ -cl (G) is also $(1, 2)^*$ - $M_{m\pi}$ -open. Moreover $x \in (1, 2)^*$ - $M_{m\pi}$ -cl (G) and y $\notin (1, 2)^*$ - $M_{m\pi}$ -cl (G). Hence X is $(1, 2)^*$ - $M_{m\pi}$ -T₀.

Definition 3.10. A biminimal space X is said to be $(1, 2)^*$ - $M_{m\pi}$ - T_1 if for any two distinct points x, y in X, there exists a pair of $(1, 2)^*$ - $M_{m\pi}$ –open sets, one containing x but not y and the other containing y but not x.

Definition 3. 11. A biminimal space X is said to be $(1, 2)^*$ - $M_{m\pi}$ - C_1 if for any two distinct points x, y in X, there exists U, V $\in (1, 2)^*$ - $M_{m\pi}$ –O(X), such that $(1, 2)^*$ - $M_{m\pi}$ –cl (U) containing x but not y and $(1, 2)^*$ - $M_{m\pi}$ –cl (V) containing y but not x.

Remark 3. 12.

- 1. Every $(1, 2)^*$ $M_{m\pi}$ - T_1 space is $(1, 2)^*$ $M_{m\pi}$ - T_0 .
- 2. Every $(1, 2)^*$ $M_{m\pi}$ -C₁ space is $(1, 2)^*$ $M_{m\pi}$ -T₁.
- 3. Every $(1, 2)^*$ $M_{m\pi}$ - C_1 space is $(1, 2)^*$ $M_{m\pi}$ - C_0 .

But the converses are not true in general as illustrated in the next example.

Example 3.13.

- 1. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X, \{c\}\}$. Then $(1, 2)^*$ $M_{m\pi}$ -O(X) = $\{\phi, X, \{b\}, \{c\}, \{b, c\}\}$. It is clear that, X is $(1, 2)^*$ $M_{m\pi}$ -T₀, but not $(1, 2)^*$ $M_{m\pi}$ -T₁ space.
- 2. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}\}$. Then $(1, 2)^*$ $M_{m\pi}$ -O(X) = $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Here X is $(1, 2)^*$ $M_{m\pi}$ -T₀, but not $(1, 2)^*$ $M_{m\pi}$ -C₀ space.
- 3. Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a\}, \{b\}\}$ and $\tau_2 = \{\phi, X, \{a, b, d\}\}$. Then $(1, 2)^*$ $M_{m\pi}$ -O(X) = $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}\}$. Then, X is $(1, 2)^*$ $M_{m\pi}$ -C₀, but not $(1, 2)^*$ $M_{m\pi}$ -C₁ space.

Theorem 3. 14. In a biminimal space X, the following statements are equivalent.

- 1. X is $(1, 2)^*$ M_{m π} -T₁.
- 2. Each one point set is $(1, 2)^*$ M_{m π} -closed set in X.

Proof. (1) => (2). Let X be (1, 2)*- $M_{m\pi}$ - T_1 and $x \in X$. Suppose (1, 2)*- $M_{m\pi}$ -cl ({x}) \neq {x}. Then we can find an element $y \in (1, 2)$ *- $M_{m\pi}$ -cl({x}) with $y \neq x$. Since X is (1, 2)*- $M_{m\pi}$ - T_1 , there exist (1, 2)*- $M_{m\pi}$ -open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$. Now $x \in V$. V^C and V^C is $(1, 2)^*$ - M_{mπ} –closed set. Therefore, $(1, 2)^*$ - M_{mπ} –cl $({x}) \subseteq V^C$ which implies y $\in V^C$, a contraction. Hence, $(1, 2)^*$ - M_{mπ} –cl $({x}) = {x}$ or ${x}$ is $(1, 2)^*$ - M_{mπ} –closed. (2) => (1). Let x, y ∈ X and x ≠ y. Then ${x}$ and ${y}$ are $(1, 2)^*$ - M_{mπ} –closed. Therefore, U = $({y})^C$ and V = $({x})^C$ are $(1, 2)^*$ - M_{mπ} – open and x ∈ U, y ∉ U and y ∈ V, x ∉ V. Hence is $(1, 2)^*$ - M_{mπ} -T₁.

Definition 3. 15. A biminimal space X is called a $(1, 2)^*$ - $M_{m\pi}$ - T_2 space if for any two distinct points x, y in X, there exists a pair of disjoint $(1, 2)^*$ - $M_{m\pi}$ –open sets U and V such that $x \in U$ and $y \in V$ and $U \cap V = \varphi$.

Definition: 3. 16 A function f: $X \rightarrow Y$ is called $(1, 2)^* - M_{m\pi}$ -irresolute if the inverse image of every $(1, 2)^* - M_{m\pi}$ -closed set in Y is $(1, 2)^* - M_{m\pi}$ -closed set in X.

Theorem 3.17. If f: X \rightarrow Y is an injective, $(1, 2)^*$ - $M_{m\pi}$ -irresolute function and Y is $(1, 2)^*$ - $M_{m\pi}$ -T₂ then X is $(1, 2)^*$ - $M_{m\pi}$ -T₂.

Proof. Let x, $y \in X$ and $x \neq y$. Since f is injective, $f(x) \neq f(y)$ in Y and there exist disjoint $(1, 2)^*$ -M_{m π} -open sets U, V such that $f(x) \in U$ and $f(y) \in V$. Let $G=f^{-1}(U)$ and $H=f^{-1}(V)$. Then $x \in G$, $y \in H$ and G, $H \in (1, 2)^*$ - M_{m π} -O(X). Also $G \cap H = f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = \varphi$. Thus X is $(1, 2)^*$ - M_{m π} -T₂.

Theorem 3. 18. If f: X \rightarrow Y is an injective, $(1, 2)^*$ - $M_{m\pi}$ -irresolute function and Y is $(1, 2)^*$ - $M_{m\pi}$ - T_1 then X is $(1, 2)^*$ - $M_{m\pi}$ - T_1 .

Proof. The proof is similar to the above theorem.

Remark 3. 19. Every $(1, 2)^*$ - $M_{m\pi}$ – T_2 space is $(1, 2)^*$ - $M_{m\pi}$ – T_1 .

Definition 3. 20. A biminimal space X is called a $(1, 2)^*$ - $M_{m\pi}$ – R_0 space if for each $(1, 2)^*$ - $M_{m\pi}$ –open set G, $x \in G$, implies $(1, 2)^*$ - $M_{m\pi}$ –cl $(\{x\}) \subseteq G$.

Theorem 3. 21 : For any biminimal space X, the following are equivalent:

- 1. X is $(1, 2)^*- M_{m\pi}-R_0$.
- 2. $F \in (1, 2)^*$ $M_{m\pi}$ -C(X) and $x \notin F \Rightarrow F \subseteq U$ and $x \notin U$ for some $U \in (1, 2)^*$ $M_{m\pi}$ -O(X).
- 3. $F \in (1, 2)^*$ $M_{m\pi}$ -C(X) and $x \notin F \Longrightarrow F \cap (1, 2)^*$ $M_{m\pi}$ -cl ({x}) = φ .
- 4. For any two distinct points x, y of X, either $(1, 2)^*$ $M_{m\pi}$ -cl $(\{x\}) = (1, 2)^*$ $M_{m\pi}$ -cl $(\{y\})$ or $(1, 2)^*$ $M_{m\pi}$ -cl $(\{x\}) \cap (1, 2)^*$ $M_{m\pi}$ -cl $(\{y\}) = \varphi$.

Proof. 1 => 2: $F \in (1, 2)^*$ - $M_{m\pi}$ -C(X) and $x \notin F => x \in X \setminus F \in (1, 2)^*$ - $M_{m\pi}$ -O(X) =>

 $(1, 2)^*$ - M_{mπ}-cl ({x}) ⊆ X \ F (by (1)). Put U = X \ (1, 2)^*- M_{mπ}-cl ({x}). Then x ∉ U ∈ (1, 2)*- M_{mπ}-O(X) and F ⊆ U.

2=> 3: $F \in (1, 2)^*$ - $M_{m\pi}$ -C(X) and $x \notin F =>$ there exists $U \in (1, 2)^*$ - $M_{m\pi}$ -O(X) such that $x \notin U$ and $F \subseteq U$ (by (2)) => U \cap (1, 2)*- $M_{m\pi}$ -cl ({x}) = $\varphi => F \cap (1, 2)^*$ - $M_{m\pi}$ -cl ({x}) = φ . **3=> 4:** Suppose that for any two distinct points x, y of X, (1, 2)*- $M_{m\pi}$ -cl ({x}) \neq (1, 2)*- $M_{m\pi}$ -cl ({y}). Then suppose without any loss of generality that there exists some $z \in (1, 2)^*$ - $M_{m\pi}$ -cl ({x}) such that $z \notin (1, 2)^*$ - $M_{m\pi}$ -cl ({y}). Thus there exists $V \in (1, 2)^*$ - $M_{m\pi}$ -O(X) such that $z \notin V$ but $x \in V$. Thus $x \notin (1, 2)^*$ - $M_{m\pi}$ -cl ({y}). Hence by (3), (1, 2)*- $M_{m\pi}$ -cl ({x}) $\cap (1, 2)^*$ - $M_{m\pi}$ -cl ({y}) = φ .

4=> 1 : Let U∈(1, 2)*- M_{mπ}-O(X) and x ∈ U. Then for each y ∉ U, x ∉ (1, 2)*- M_{mπ}-cl ({y}). Thus (1, 2)*- M_{mπ}-cl ({x}) ≠ (1, 2)*- M_{mπ}-cl ({y}). Hence by (4), (1, 2)*- M_{mπ}-cl ({x}) ∩ (1, 2)*- M_{mπ}-cl ({y}) = φ, for each y ∈ X \ U. So (1, 2)*- M_{mπ}-cl ({x}) ∩ [U {(1, 2)*- M_{mπ}-cl ({y}) : y ∈ X \ U}] = φ(i).

Now, $U \in (1, 2)^*$ - $M_{m\pi}$ -O(X) and $y \in X \setminus U \Rightarrow \{y\} \subseteq (1, 2)^*$ - $M_{m\pi}$ -cl $(\{y\}) \subseteq (1, 2)^*$ - $M_{m\pi}$ cl $(X \setminus U) = X \setminus U$.Thus $X \setminus U = U \{(1, 2)^*$ - $M_{m\pi}$ -cl $(\{y\}) : y \in X \setminus U\}$. Hence from (i), (1, 2)*- $M_{m\pi}$ -cl $(\{x\}) \cap (X \setminus U) = \phi \Rightarrow (1, 2)^*$ - $M_{m\pi}$ -cl $(\{x\}) \subseteq U$, showing that X is $(1, 2)^*$ - $M_{m\pi}$ -R₀.

Definition 3. 22. A biminimal space X is called a $(1, 2)^*$ - $M_{m\pi}$ – R_1 space if for any two distinct points x, y in X, with $(1, 2)^*$ - $M_{m\pi}$ -cl $(\{x\}) \neq (1, 2)^*$ - $M_{m\pi}$ –cl $(\{y\})$, there exists pair of disjoint $(1, 2)^*$ - $M_{m\pi}$ –open sets U and V such that $(1, 2)^*$ - $M_{m\pi}$ –cl $(\{x\}) \subseteq U$ and $(1, 2)^*$ - $M_{m\pi}$ –cl $(\{y\}) \subseteq V$.

Theorem 3. 23. Every $(1, 2)^*$ - $M_{m\pi}$ – R_1 biminimal space is $(1, 2)^*$ - $M_{m\pi}$ – R_0 .

Proof. Let X be $(1, 2)^*$ - $M_{m\pi}$ – R_1 and let G be a $(1, 2)^*$ - $M_{m\pi}$ –open set containing x. If $(1, 2)^*$ - $M_{m\pi}$ –cl $(\{x\}) \not\subseteq G$ then there exists an element $y \in (1, 2)^*$ - $M_{m\pi}$ –cl $(\{x\}) \cap G^C$. Since G^C is $(1, 2)^*$ - $M_{m\pi}$ –closed, $(1, 2)^*$ - $M_{m\pi}$ –cl $(\{y\}) \subseteq G^C$. Now $(1, 2)^*$ - $M_{m\pi}$ –cl $(\{x\}) \neq (1, 2)^*$ - $M_{m\pi}$ –cl $(\{y\})$ and X is $(1, 2)^*$ - $M_{m\pi}$ –R₁. Hence there exists disjoint $(1, 2)^*$ - $M_{m\pi}$ –open sets containing $(1, 2)^*$ - $M_{m\pi}$ –cl $(\{x\})$ and $(1, 2)^*$ - $M_{m\pi}$ –cl $(\{y\})$ respectively. This is not possible, since $y \in (1, 2)^*$ - $M_{m\pi}$ –cl $(\{x\}) \cap (1, 2)^*$ - $M_{m\pi}$ –cl $(\{y\})$.

Theorem 3. 24. Let X be a biminimal space. Then X is $(1, 2)^*$ - $M_{m\pi}$ - R_0 if and only if for every $(1, 2)^*$ - $M_{m\pi}$ -closed set K and $x \notin K$, there exists a $(1, 2)^*$ - $M_{m\pi}$ -open set S such that $K \subset S$ and $x \notin S$.

Proof. Necessity. Let X be a $(1, 2)^*$ - $M_{m\pi}$ - R_0 space and K be a $(1, 2)^*$ - $M_{m\pi}$ -closed subset such that $x \notin K$. We have $X \setminus K$ is $(1, 2)^*$ - $M_{m\pi}$ -open and $x \in X \setminus K$. Since X is $(1, 2)^*$ - $M_{m\pi}$

-R0, then $(1, 2)^*$ - $M_{m\pi}$ -cl $(\{x\}) \subset X \setminus K$. We obtain $K \subset X \setminus (1, 2)^*$ - $M_{m\pi}$ -cl $(\{x\})$. Take S = $X \setminus (1, 2)^*$ - $M_{m\pi}$ -cl $(\{x\})$. Thus, S is a $(1, 2)^*$ - $M_{m\pi}$ -open set such that $K \subset S$ and $x \notin S$. **Sufficiency**. Let S be a $(1, 2)^*$ - $M_{m\pi}$ -open set and $x \in U$. Then $X \setminus S$ is a $(1, 2)^*$ - $M_{m\pi}$ -closed set and $x \notin X \setminus S$. Then there exists a $(1, 2)^*$ - $M_{m\pi}$ -open subset U such that $X \setminus S \subset U$ and $x \notin U$. We obtain $X \setminus U \subset S$ and $x \in X \setminus U$. Since $X \setminus U$ is a $(1, 2)^*$ - $M_{m\pi}$ -closed set, then $(1, 2)^*$ - $M_{m\pi}$ -cl $(\{x\}) \subset X \setminus U \subset S$. Hence, X is a $(1, 2)^*$ - $M_{m\pi}$ -R₀ space. **Theorem 3** 25 Let X be a biminimal space. Then X is $(1, 2)^*$ - $M_{m\pi}$ -T, if and only if it is a $(1, 2)^*$ -

Theorem 3.25. Let X be a biminimal space. Then X is $(1, 2)^*$ - $M_{m\pi}$ – T_1 if and only if it is a $(1, 2)^*$ - $M_{m\pi}$ – T_0 and $(1, 2)^*$ - $M_{m\pi}$ – R_0 .

Proof. Let X be a $(1, 2)^*$ - $M_{m\pi} - T_1$ space. By the definition of $(1, 2)^*$ - $M_{m\pi} - T_1$ space, it is a $(1, 2)^*$ - $M_{m\pi} - T_0$ and $(1, 2)^*$ - $M_{m\pi} - R_0$ space.

Conversely, let X be a $(1, 2)^*$ - $M_{m\pi} - T_0$ space and $(1, 2)^*$ - $M_{m\pi} - R_0$ space. Let x, y be any two distinct points of X. Since X is $(1, 2)^*$ - $M_{m\pi} - T_0$, then there exists a $(1, 2)^*$ - $M_{m\pi}$ – open set U such that $x \in U$ and $y \notin U$ or there exists a $(1, 2)^*$ - $M_{m\pi}$ –open set V such that $y \in V$ and $x \notin V$. Let $x \in U$ and $y \notin U$. Since X is $(1, 2)^*$ - $M_{m\pi} - R_0$, then $(1, 2)^*$ - $M_{m\pi}$ –cl $(\{x\}) \subset U$. We have $y \notin U$ and then $y \notin (1, 2)^*$ - $M_{m\pi}$ –cl $(\{x\})$. We obtain $y \in X \setminus (1, 2)^*$ - $M_{m\pi}$ – cl $(\{x\})$. Take $S = X \setminus (1, 2)^*$ - $M_{m\pi}$ –cl $(\{x\})$. Thus, U and S are $(1, 2)^*$ - $M_{m\pi}$ –open sets containing x and y, respectively, such that $y \notin U$ and $x \notin S$. Hence, X is $(1, 2)^*$ - $M_{m\pi} - T_1$.

Theorem 3. 26. Let X be a biminimal space. Then X is a $(1, 2)^*$ - $M_{m\pi}$ - R_0 space if and only if for any x and y in X, $(1, 2)^*$ - $M_{m\pi}$ - $cl(\{x\}) \neq (1, 2)^*$ - $M_{m\pi}$ - $cl(\{y\})$ implies $(1, 2)^*$ - $M_{m\pi}$ - $cl(\{x\}) \cap (1, 2)^*$ - $M_{m\pi}$ - $cl(\{y\}) = \varphi$.

Proof. Let X be $(1, 2)^*$ - $M_{m\pi}$ - R_0 and x, y \in X such that $(1, 2)^*$ - $M_{m\pi}$ - $cl ({x}) \neq (1, 2)^*$ - $M_{m\pi}$ - $cl ({y})$. Then, there exist a k $\in (1, 2)^*$ - $M_{m\pi}$ - $cl ({x})$ such that k $\notin (1, 2)^*$ - $M_{m\pi}$ - $cl ({y})$ (or k $\in (1, 2)^*$ - $M_{m\pi}$ - $cl ({y})$ such that k $\notin (1, 2)^*$ - $M_{m\pi}$ - $cl ({x})$ and then there exists V $\in (1, 2)^*$ - $M_{m\pi}$ - O(X) such that y \notin V and k \in V and hence x \in V. Thus, x $\notin (1, 2)^*$ - $M_{m\pi}$ - $cl ({y})$ and x \in X \ (1, 2)*- $M_{m\pi}$ - $cl ({y}) \in (1, 2)^*$ - $M_{m\pi}$ -O(X). We have (1, 2)*- $M_{m\pi}$ - $cl ({x}) \subset X \setminus (1, 2)^*$ - $M_{m\pi}$ - $cl ({y})$ and (1, 2)*- $M_{m\pi}$ - $cl ({x}) \cap (1, 2)^*$ - $M_{m\pi}$ - $cl ({y}) = \varphi$.

Conversely, Let $V \in (1, 2)^*$ - $M_{m\pi}$ –O(X) and $x \in V$. Let $y \notin V$. We have $y \in X \setminus V$. Then $x \neq y$ and $x \notin (1, 2)^*$ - $M_{m\pi}$ –cl($\{y\}$). We obtain $(1, 2)^*$ - $M_{m\pi}$ –cl($\{x\}$) $\neq (1, 2)^*$ - $M_{m\pi}$ –cl($\{y\}$) and then $(1, 2)^*$ - $M_{m\pi}$ –cl($\{x\}$) $\cap (1, 2)^*$ - $M_{m\pi}$ –cl($\{y\}$) = φ . Thus, $y \notin (1, 2)^*$ - $M_{m\pi}$ –cl($\{x\}$) and then $(1, 2)^*$ - $M_{m\pi}$ – cl($\{x\}$) $\subset V$. We obtain that X is a $(1, 2)^*$ - $M_{m\pi}$ – R₀ space.

Theorem 3. 27. Let X be a biminimal space. Then the following properties are equivalent:

1. X is a (1, 2)*- $M_{m\pi}$ - R_0 space.

2. $x \in (1, 2)^*$ - $M_{m\pi}$ -cl ({y}) if and only if $y \in (1, 2)^*$ - $M_{m\pi}$ -cl ({x}) for any points x and y in X.

Proof. 1 =>2. Let X be $(1, 2)^*$ - $M_{m\pi}$ -R₀. Let $x \in (1, 2)^*$ - $M_{m\pi}$ -cl $(\{y\})$ and S be any $(1, 2)^*$ -

 $M_{m\pi}$ –open set such that $y \in S$. By (1), $x \in S$. Hence, every (1, 2)*- $M_{m\pi}$ -open set which

contains y contains x and then $y \in (1, 2)^*$ - $M_{m\pi}$ -cl ({x}).

 $2 \Longrightarrow 1. \text{ Let } U \text{ be a } (1, 2)^* \text{-} M_{m\pi} \text{ -open set and } x \in U. \text{ If } y \notin U, \text{ then } x \notin (1, 2)^* \text{-} M_{m\pi} \text{ -cl } (\{y\})$

and hence $y \notin (1, 2)^*$ - $M_{m\pi}$ -cl ({x}). We have $(1, 2)^*$ - $M_{m\pi}$ -cl ({x}} $\subset U$. Thus, X is $(1, 2)^*$ - $M_{m\pi}$ -R₀.

Theorem 3.28. The following are equivalent in a biminimal space X.

- 1. X is $(1, 2)^*$ M_{m π} -T₂.
- 2. X is $(1, 2)^*-M_{m\pi}-R_1$ and $(1, 2)^*-M_{m\pi}-T_1$.
- 3. X is $(1, 2)^*$ M_{m π} –R₁ and $(1, 2)^*$ M_{m π} –T₀.

Proof. 1=> 2: X is $(1, 2)^*$ - $M_{m\pi}$ – T_2 implies X is $(1, 2)^*$ - $M_{m\pi}$ – T_1 and therefore by Theorem 3. 11, every singleton set in X is $(1, 2)^*$ - $M_{m\pi}$ –closed. Let x, $y \in X$ and $x \neq y$. Since X is $(1, 2)^*$ - $M_{m\pi}$ – T_2 , there exist two disjoint $(1, 2)^*$ - $M_{m\pi}$ –open sets U and V containing x and y respectively. Since {x} and {y} are $(1, 2)^*$ - $M_{m\pi}$ -closed, X is $(1, 2)^*$ - $M_{m\pi}$ – R_1 . **2 => 3:** This is obvious, since X is $(1, 2)^*$ - $M_{m\pi}$ – T_1 implies X is $(1, 2)^*$ - $M_{m\pi}$ – T_0 . **3 => 1:** Let x, y \in X and x \neq y.

Case (a). $(1, 2)^*$ - $M_{m\pi}$ -cl $(\{x\}) \neq (1, 2)^*$ - $M_{m\pi}$ -cl $(\{y\})$. Since X is $(1, 2)^*$ - $M_{m\pi}$ -R₁, there exist two disjoint $(1, 2)^*$ - $M_{m\pi}$ -open sets U and V such that U $\supseteq (1, 2)^*$ - $M_{m\pi}$ -cl $(\{x\})$ and V $\supseteq (1, 2)^*$ - $M_{m\pi}$ -cl $(\{y\})$. Then $x \in U$ and $y \in V$.

Case (b). $(1, 2)^*$ - $M_{m\pi}$ -cl ({x}) = (1, 2)^*- $M_{m\pi}$ -cl ({y}). Since $x \neq y$ and X is $(1, 2)^*$ - $M_{m\pi}$ -T₀, there exists a $(1, 2)^*$ - $M_{m\pi}$ -open sets U containing x but not y. Then $y \in U^c$, a $(1, 2)^*$ - $M_{m\pi}$ -closed set. This implies $(1, 2)^*$ - $M_{m\pi}$ -cl ({y}) $\subseteq U^c$ and therefore $(1, 2)^*$ - $M_{m\pi}$ -cl

 $({x}) \subseteq U^c$ or $x \in U^c$, which is a contradiction. Hence case (b) is not possible.

Theorem 3.29. Let X be any biminimal space. Then the following are equivalent.

- 1. X is $(1, 2)^*$ $M_{m\pi}$ R_1 space.
- 2. For any $x, y \in X$, one of the following holds:
 - i. For $U \in (1, 2)^*$ $M_{m\pi}$ -O(X), $x \in U$ iff $y \in V$.

ii. There exists disjoint $(1, 2)^*$ - $M_{m\pi}$ -open sets U and V such that $x \in U, y \in V$.

3. If x, y \in X such that (1, 2)*- M_{mπ} -cl ({x}) \neq (1, 2)*- M_{mπ} -cl ({y}), then there exists (1, 2)*- M_{mπ} -closed sets F₁ and F₂ such that x \in F₁, y \notin F₁, y \in F₂, x \notin F₁ and X = F₁ U F₂.

Proof. 1 => 2: Let x, y \in X. Then (1, 2)*- $M_{m\pi}$ -cl ({x}) = (1, 2)*- $M_{m\pi}$ -cl ({y}) or (1, 2)*- $M_{m\pi}$ -cl ({x}) \neq (1, 2)*- $M_{m\pi}$ -cl ({y}). If (1, 2)*- $M_{m\pi}$ -cl ({x}) = (1, 2)*- $M_{m\pi}$ -cl ({y}) and

$$\begin{split} &U \in (1, 2)^{*} - M_{m\pi} - O(X), \text{ then } x \in U => y \in (1, 2)^{*} - M_{m\pi} - cl(\{y\}) = (1, 2)^{*} - M_{m\pi} - cl(\{x\}) \\ &\subseteq U \text{ (as } X \text{ is } (1, 2)^{*} - M_{m\pi} - R_{0}). \text{ If } (1, 2)^{*} - M_{m\pi} - cl(\{x\}) \neq (1, 2)^{*} - M_{m\pi} - cl(\{y\}), \text{ then there} \\ &\text{ exists } U, V \in (1, 2)^{*} - M_{m\pi} - O(X) \text{ such that } x \in (1, 2)^{*} - M_{m\pi} - cl(\{x\}) \subseteq U, y \in (1, 2)^{*} - M_{m\pi} \\ &-cl(\{y\}) \subseteq V \text{ and } U \cap V = \varphi. \end{split}$$

2 => 3: Let x, y \in X such that $(1, 2)^*$ - $M_{m\pi}$ -cl({x}) \neq (1, 2)*- $M_{m\pi}$ -cl({y}). Then x \notin (1, 2)*- $M_{m\pi}$ -cl({y}), so that there exists G \in (1, 2)*- $M_{m\pi}$ -O(X) such that x \in G and y \notin G. Thus by [2], there exists disjoint (1, 2)*- $M_{m\pi}$ -open sets U and V such that x \in U, y \in V. Put F₁ = X \ V and F₂ = X \ U. Then F₁, F₂ \in (1, 2)*- $M_{m\pi}$ -C(X), x \in F₁, y \notin F₁, y \in F₂, x \notin F₂ and X = F₁ U F₂.

3 => **1**: Let U ∈ (1, 2)*- $M_{m\pi}$ -O(X) and x ∈ U. Then (1, 2)*- $M_{m\pi}$ -cl ({x}) ⊆ U. In fact, otherwise there exists y ∈ (1, 2)*- $M_{m\pi}$ -cl ({x}) ∩ (X \ U). Then (1, 2)*- $M_{m\pi}$ -cl ({x}) ≠ (1, 2)*- $M_{m\pi}$ -cl ({y}) (as x ∉ (1, 2)*- $M_{m\pi}$ -cl ({y})) and so by [3], there exists F₁, F₂ ∈ (1, 2)*- $M_{m\pi}$ -C(X) such that x ∈ F₁, y ∉ F₁, y ∈ F₂, x ∉ F₂ and X = F₁ U F₂. Then y ∈ F₂ \ F₁ = X \ F₁ and x ∉ X \ F₁, where X \ F₁ ∈ (1, 2)*- $M_{m\pi}$ -O(X), which is a contradiction to the fact that y ∈ (1, 2)*- $M_{m\pi}$ -cl ({x}). Hence (1, 2)*- $M_{m\pi}$ -cl ({x}) ⊆ U. Thus X is (1, 2)*- $M_{m\pi}$ -R₀. To show X to be (1, 2)*- $M_{m\pi}$ -R₁ assume that a, b ∈ X with (1, 2)*- $M_{m\pi}$ -cl ({a}) ≠ (1, 2)*- $M_{m\pi}$ -cl ({b}). Then as above, there exists P₁, P₂ ∈ (1, 2)*- $M_{m\pi}$ -C(X) such that a ∈ P₁, b ∉ P₁, b ∈ P₂, a ∉ P₂ and X = P₁ U P₂. Thus a ∈ P₁ \ P₂∈ (1, 2)*- $M_{m\pi}$ -O(X), b ∈ P₂ \ P₁∈ (1, 2)*- $M_{m\pi}$ -Cl ({a}) ⊆ P₁ \ P₂. (1, 2)*- $M_{m\pi}$ -Cl ({b}) ⊂ P₂ \ P₁. Thus X is (1, 2)*- $M_{m\pi}$

Remark 3. 30. From the above theorems and examples we have the following implications.

- 1. $(1, 2)^* M_{m\pi} T_0$. 2. $(1, 2)^* M_{m\pi} T_1$. 3. $(1, 2)^* M_{m\pi} T_2$. 4. $(1, 2)^* M_{m\pi} C_0$
- 5. $(1, 2)^*$ $M_{m\pi}$ C_1 6. $(1, 2)^*$ $M_{m\pi}$ R_0 7. $(1, 2)^*$ $M_{m\pi}$ R_1 .

Definition 3. 31. A space X is said to be $(1, 2)^*$ - $M_{m\pi}$ -regular for each $(1, 2)^*$ - $M_{m\pi}$ -closed set F and each point $x \notin F$ there exist disjoint $(1, 2)^*$ - $M_{m\pi}$ -open sets U and V such that $x \in U$ and $F \subset V$.

Theorem 3. 32. An $(1, 2)^*$ - $M_{m\pi}$ - T_0 -space is $(1, 2)^*$ - $M_{m\pi}$ - T_2 -space if it is $(1, 2)^*$ - $M_{m\pi}$ - regular.

Proof. Let X be $(1, 2)^*$ - $M_{m\pi}$ -T₀-space and $(1, 2)^*$ - $M_{m\pi}$ -regular. If x, $y \in X$, $x \neq y$, there exists $U \in (1, 2)^*$ - $M_{m\pi}$ -O(X) such that U contains one of x and y, say x but not y. Then X\U is $(1, 2)^*$ - $M_{m\pi}$ -closed and $x \notin X \setminus U$. Since X is $(1, 2)^*$ - $M_{m\pi}$ -regular, there exist disjoint $(1, 2)^*$ - $M_{m\pi}$ -open sets V₁ and V₂ such that $x \in V_1$ and $X \setminus U \subset V_2$. Thus $x \in V_1$ and $y \in V_2$, $V_1 \cap V_2 = \varphi$. Hence X is $(1, 2)^*$ - $M_{m\pi}$ -T₂-space.

4. $(1, 2)^*$ - M_{m π} -NEIGHBOURHOOD AND $(1, 2)^*$ - M_{m π} - ACCUMULATION POINTS

Definition 4.1. A subset N of X is said to be $(1, 2)^*$ - $M_{m\pi}$ –neighbourhood of a point x \in X if there exist $(1, 2)^*$ - $M_{m\pi}$ -open set G of X such that x \in G \subseteq N.

Example 4. 2. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}\}\)$ and $\tau_2 = \{\phi, X, \{a, c\}, \{b, c\}\}$. Here $\{\phi, X, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}\)$ are $(1, 2)^*$ - $M_{m\pi}$ –open sets in X. Then, $\{b\}, \{a, b\}, \{b, c\}\)$ and X are $(1, 2)^*$ - $M_{m\pi}$ –neighbourhood of $\{b\}$.

Theorem 4. 3. Let X be a biminimal space. If $N \subseteq M$ and N is $(1, 2)^*$ - $M_{m\pi}$ –neighbourhood of a point x, then M is $(1, 2)^*$ - $M_{m\pi}$ –neighbourhood of a point x.

Proof. Suppose that $N \subseteq M$ and N is $(1, 2)^*$ - $M_{m\pi}$ –neighbourhood of a point x. Thus there exists $(1, 2)^*$ - $M_{m\pi}$ –open set G of X such that $x \in G \subseteq N$. By assumption, we have $N \subseteq M$. The theorem is now complete.

Theorem 4. 4. Let X be a biminimal space, G be any subset of X and $x \in X$. G is $(1, 2)^*$ - $M_{m\pi}$ - open set of X if and only if G is $(1, 2)^*$ - $M_{m\pi}$ –neighbourhood of x for any $x \in G$.

Proof. Let X be a biminimal space, G be any subset of X and $x \in X$.

Suppose that G is $(1, 2)^*$ - M_{m π} –open set of X.

Case 1. If $G = \phi$, it is clear.

Case 2. If $G \neq \phi$, let $x \in G$. Since G is $(1, 2)^*$ - $M_{m\pi}$ –open and $G \subseteq G$, G is $(1, 2)^*$ - $M_{m\pi}$ –

neighbourhood of x

Conversely, suppose that G is $(1, 2)^*$ - $M_{m\pi}$ –neighbourhood of x for any x \in G. Now, we would like to show that G is $(1, 2)^*$ - $M_{m\pi}$ –open. Since x \in G and G is $(1, 2)^*$ - $M_{m\pi}$ –neighbourhood of x, there exists $(1, 2)^*$ - $M_{m\pi}$ –open set U_x such that x $\in U_x \subseteq$ G and so $\{x\} \subseteq U_x \subseteq$ G. It follows that,

$$\mathbf{G} = \bigcup_{x \in G} \{x\} \subseteq \bigcup_{x \in G} U_x \subseteq \bigcup_{x \in G} G = \mathbf{G}, \mathbf{G} = \bigcup_{x \in G} U_x$$

Since U_x is $(1, 2)^*$ - $M_{m\pi}$ –open for any $x \in G$ and by Theorem 3. 7[8], we have G is $(1, 2)^*$ - $M_{m\pi}$ –open set of X.

Theorem 4. 5. For a space X, the following statements are equivalent.

- 1. X is $(1, 2)^* M_{m\pi} T_2$.
- 2. If $x \in X$, then for each $y \neq x$, there is an $(1, 2)^*$ $M_{m\pi}$ -neighbourhood N(x) of x, such that $y \notin (1, 2)^*$ $M_{m\pi}$ -cl (N(x)).
- 3. For each $x \in \{(1, 2)^* M_{m\pi} cl (N): N \text{ is an } (1, 2)^* M_{m\pi} neighbourhood of x \} = \{x\}.$

Proof. 1 => 2: Let $x \in X$. If $y \in X$ is such that $y \neq x$, there exist disjoint $(1, 2)^*$ - $M_{m\pi}$ -open sets U, V such that $x \in U$ and $y \in V$. Then $x \in U \subseteq X - V$ which implies that X - V is an $(1, 2)^*$ - $M_{m\pi}$ -neighbourhood of x. Also X –V is $(1, 2)^*$ - $M_{m\pi}$ -closed and $y \notin X - V$. Let N(x) = X - V. Then $y \notin (1, 2)^*$ - $M_{m\pi}$ -cl (N(x)). 2 => 3: Obvious.

3 => 1: Let x, y ∈ X, x ≠ y. By hypothesis, there is atleast an (1, 2)*- $M_{m\pi}$ -neighbourhood N of x such that y ∉ (1, 2)*- $M_{m\pi}$ -cl (N). We have x ∉ X - (1, 2)*- $M_{m\pi}$ -cl (N) is (1, 2)*- $M_{m\pi}$ -open. Since N is an (1, 2)*- $M_{m\pi}$ -neighbourhood of x, there exists U ∈ (1, 2)*- $M_{m\pi}$ -O(X) such that x ∈ U ⊆ N and U ∩(X - (1, 2)*- $M_{m\pi}$ -cl (N)) = φ . Hence X is (1, 2)*- $M_{m\pi}$ -T₂.

Definition 4. 6. A point x of X is called a $(1, 2)^*$ - $M_{m\pi}$ –accumulation point of a subset A of X if $G \cap (A - \{x\}) \neq \phi$ for any $(1, 2)^*$ - $M_{m\pi}$ –open set G in X such that $x \in G$.

We denote the set of all $(1, 2)^*$ - $M_{m\pi}$ –accumulation point of A by $(1, 2)^*$ - $M_{m\pi}$ –acc (A).

Example 4. 7. In Example 4. 2, $\{3\}$ is $(1, 2)^*$ - $M_{m\pi}$ –accumulation point of X and $(1, 2)^*$ - $M_{m\pi}$ –acc(X) = $\{3\}$.

Lemma 4.8. Let X is a biminimal space and A, B be a subset of X. If $A \subseteq B$, then $(1, 2)^*$ - $M_{m\pi}$ –acc (A) $\subseteq (1, 2)^*$ - $M_{m\pi}$ –acc (B).

Proof. Let $A \subseteq B$ and $x \in (1, 2)^*$ - $M_{m\pi}$ –acc (A). Then for any $(1, 2)^*$ - $M_{m\pi}$ –open set G in X such that $x \in G$, $G \cap (A - \{x\}) \neq \phi$. Since A- $\{x\} \subseteq B$ - $\{x\}$ and so $\phi \neq G \cap (A - \{x\}) \subseteq G \cap (B - \{x\})$. Hence $x \in (1, 2)^*$ - $M_{m\pi}$ –acc (B).

Theorem 4.9. Let X be a biminimal space and A, B be a subset of X. Then $(1, 2)^*$ - $M_{m\pi}$ –acc $(A \cap B) \subseteq (1, 2)^*$ - $M_{m\pi}$ –acc $(A) \cap (1, 2)^*$ - $M_{m\pi}$ –acc (B).

Proof. Let $A \cap B \subseteq A$, $A \cap B \subseteq B$ and Lemma 4. 8, we obtain that $(1, 2)^* \cdot M_{m\pi} - acc (A \cap B)$ $\subseteq (1, 2)^* \cdot M_{m\pi} - acc (A)$ and $(1, 2)^* \cdot M_{m\pi} - acc (A \cap B) \subseteq (1, 2)^* \cdot M_{m\pi} - acc (B)$. Therefore, $(1, 2)^* \cdot M_{m\pi} - acc (A \cap B) \subseteq (1, 2)^* \cdot M_{m\pi} - acc (B)$.

Theorem 4. 10. Let X be a biminimal space and A, B be a subset of X. A is $(1, 2)^*$ - $M_{m\pi}$ – closed set of X if and only if $(1, 2)^*$ - $M_{m\pi}$ –acc (A) \subseteq A.

Proof. Let X be a biminimal space and $A \subseteq X$.

Assume that A is $(1, 2)^*$ - $M_{m\pi}$ –closed set of X. Suppose that $(1, 2)^*$ - $M_{m\pi}$ –acc (A) \nsubseteq A. Thus there exists x $\in (1, 2)^*$ - $M_{m\pi}$ –acc (A), but x \notin A. Since x $\in (1, 2)^*$ - $M_{m\pi}$ –acc (A), G \cap (A –

 $\{x\}) \neq \phi \text{ for any } (1,2)^*\text{-} M_{m\pi} \text{ -open set } G \text{ in } X \text{ such that } x \in G. \text{ Since } x \notin A, G \cap A = G \cap (A - G) \text{ open set } G \text{ open set } G \text{ in } X \text{ such that } x \in G. \text{ Since } x \notin A, G \cap A = G \cap (A - G) \text{ open set } G \text{ ope$

 $\{x\} \neq \phi$ for any $(1, 2)^*$ - $M_{m\pi}$ –open set G in X such that $x \in G$. By assumption, we get X - A is

 $(1, 2)^*$ - $M_{m\pi}$ –open and x \in X –A. It follows that $(X - A) \cap A \neq \phi$, this is contradiction.

Therefore, $(1, 2)^*$ - $M_{m\pi}$ –acc $(A) \subseteq A$.

Conversely, Assume that $(1, 2)^*$ - $M_{m\pi}$ -acc (A) \subseteq A. Next we would like to show that A is (1,

2)*- $M_{m\pi}$ -closed set of X, i. e., we must to show that X – A is (1, 2)*- $M_{m\pi}$ –open set of X.

Case 1. If $X - A = \varphi$, then A is $(1, 2)^*$ - $M_{m\pi}$ -closed set of X.

Case 2. If $X - A \neq \varphi$. Let $x \in X - A$. Thus $x \notin A$. Since $(1, 2)^*$ - $M_{m\pi}$ -acc $(A) \subseteq A$, $x \notin (1, 2)^*$ -

 $M_{m\pi}$ -acc (A). Thus there exists (1, 2)*- $M_{m\pi}$ -open set G in X such that x \in G and G \cap (A –

 $\{x\}$ = φ . Since $x \notin A$, $G \cap A = G \cap (A - \{x\}) = \varphi$ and we also have $x \in G \subseteq (X - A)$. Thus X

-A is $(1, 2)^*$ - M_{m π} -neighbourhood of x. By Theorem 4. 4, we can imply that X -A is $(1, 2)^*$ -

 $M_{m\pi}$ – open set of X. Consequently A is $(1, 2)^*$ - $M_{m\pi}$ –closed set of X.

REFERENCES

- Ashish Kar and Paritosh Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc. 82(1990), 415-422.
- 2. **S. Athisaya Pomona and M. Lellis Thivagar,** Another form of separation Axioms, Methods of Functional Analysis and Topology, Vol. 13(2007), no.4, pp. 380-385.
- 3. M. Caldas and S. Jafari, On some low separation axioms in topological spaces, Houston Journal of Math., 29 (2003), 93–104.
- M. Caldas, S. Jafari, S. A. Ponmani and M. Lellis Thivagar, On some low separation axioms in bitopological spaces, Bol. Soc. Paran. Mat.(3s) v.24 1-2(2006);69-78.

- A. S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Soc., 68 (1961), 886–893.
- S.N. Maheswari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89(1975), 395-402.
- 7. S. N. Maheswari and R. Prasad, On R₀-spaces, Portugal Math., 34(1975), 213-217.
- 8. K. Mohana and I. Arockiarani, $(1, 2)^*$ -M_{m π}-Closed sets In Biminimal Spaces (Communicated).
- M. G. Murdeshwar and S. A. Naimpally, *R*₁-topological spaces, Canad. Math. Bull., 9 (1996), 521–523.
- S. A. Naimpally, On R₀-topological spaces, Ann. Univ. Sci. Budapest. E^ootv^oos Sect. Math. 10 (1976), 53–54.
- 11. **T. Noiri,** 11th meeting on topological spaces and its Applications, Fukuoka University Seminar House, 2006, 1-9.
- V. Popa and T. Noiri, On M-continuous functions, Anal. Univ "Dunarea de Jos " Galati, Ser. Mat. Fiz. Mec. Tecor. (2), 18(23) (2000), 31-41.
- O. Ravi, R. G. Balamurugan and M. Balakrishnan, On biminimal quotient mappings, International Journal of Advances in Pure and Applied Mathematics, 1(2) (2011), 96-112.
- 14. O. Ravi, R. G. Balamurugan and M. Krishnamoorthy, Decompositions of M^{(1, 2)*}-continuity and Complete M^{(1, 2)*}-continuity In Biminimal Spaces, International Journal of Mathematical Archive, 2(11) (2011), 2299-2307.
- 15. N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk

SSSR, 38 (1943), 110–113.

 C.-T. Yang, "On paracompact spaces," Proc. Amer. Math. Soc., vol. 5, pp. 185– 189, 1954.