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Abstract

An M/G/1 retrial queueing system with breakdowns have been studied in fuzzy environment. The
arrival rate,retrial rate, service rate,failure rate and repair rate of server are all fuzzy numbers. For
this model we obtain some system characteristics such as mean orbit size ,mean normal queue size and
mean system size. The α cut approach is used to transform fuzzy queues with an unreliable server to
a family of crisp retrial queues with unreliable server. By means of the membership functions of the
system characteristics, a set of parametric nonlinear programme is developed to describe the family of
crisp queues with an unreliable server.Numerical example is also illustrated to test the feasibility.
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Introduction1

Queueing models have wider applications in service organizations as well as manufacturing firms, in that
various types of customers are serviced by various types of servers according to specific queue discipline
[4]. However, in many real-life situations the server may experience unpredictable breakdowns. Therefore,
queueing models with server breakdowns provide a realistic representation of such systems.

In traditional queueing theory, the inter arrival times, service times and inter retrial times are assumed
to follow certain probability distributions with fixed parameters. But, in real life in many situations the
parameter may only be characterized subjectively,that is, the system parameters are both possibilistic and
probabilistic. Thus fuzzy analysis would be potentially much more useful and realistic than the commonly
used crisp concepts.

Li and Lee [10] investigated analytical results for two fuzzy queues using a general approach based on
Zadeh’s extension principle. Negi and Lee [14] proposed a procedure using α -cut and two variable simulation
to analyze fuzzy queues. Using parametric programming Kao et al. [11] constructed the membership
functions of system characteristics for fuzzy queues. A queueing model with unreliable server under fuzzy
environment done by Ke.J.C et.al [19]. Santhakumaran.A and Shanmugasundaram.S [7] proposed a Single
server retrial queue in Bernoulli schedule with feedback on non-retrial Customers. Shanmugasundaram.S
and Venkatesh.B [21] discussed multi-server fuzzy queueing model using DSW algorithm.

Description of the system2

The basic queueing model of this paper is M/G/1 retrial queue with unreliable server. Customers join the
retrial orbit if and only if they are interrupted by server breakdown. Retrial customers do not join the normal
queue, but rather attempt to access the server directly at random intervals independently of arrivals or other
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retrial customers.However these interrupted customers can access to the server only when it is operational
and idle and repeat service until they have been successfully processed.We allow for both active breakdowns
which occur during a service cycle and idle breakdowns which occur while the server is not failed but idle.
The server may not breakdown while under repair.

In this work, we have used five fuzzy variables, namely the fuzzified exponential arrival rate,retrial
rate,service rate,failure rate and repair rate. Through the α cuts and Zadeh’s extension principle [9] ,we
transform fuzzy queues with unreliable server to a family of crisp retrial queues with unreliable server. As α
value varies,the family of crisp queues are then described and solved by parametric nonlinear programming
(NLP).The solutions from NLP completely and successfully derive the membership functions of the system
characteristics.The remainder of this paper is composed as follows: Section 2 describe the basic queueing
model and section 3 gives and crisp queue results. In section 4 ,a mathematical programming approach is
discussed for deriving the membership functions of these system characteristics. A numerical example is
given in section 5. Conclusions are drawn in section 6.

The crisp model3

Customers arrive to the system according to a poisson process with rate λ ¿0 and the arriving customers
form a waiting line of infinite capacity infront of an unreliable server.The retrial rate is θ ,the service rate is
γ the failure rate of server is σ and the repair rate is β. We consider a queueing model M/G/1 retrial queue
with unreliable server.The system characteristics of interest are mean orbit size E[R],normal queue size E[Q]
and system size E[N].

The queueing system is stable if and only if ρ < 1:

ρ =
λ(1− b∗(σ))(σ + β)

βb∗(σ)σ

(i) Probability that the server is idle (pI)

pI =
β

β + σ
− λ(1− b∗(σ))

σb∗(σ)
(3.1)

(ii) Probability that the server is failure (pF )

pF =
σ

β + σ
(3.2)

(iii)Probability that the server is busy (pB)

pB =
λ(1− b∗(σ))

σb∗(σ)
(3.3)

E[R] =
ρ

1− ρ
[

β

β + σ

σb∗(σ)[σ − λ(1− b∗(σ))] + (β + σ)[λ(1− b∗(σ))− σB̂′]
b∗(σ)[βσ − λ(1− b∗(σ))(β + σ)]

+
σ

θ
(3.4)]

E[Q] = λ
σ3b∗(σ)− (β + σ)2[σB̂′ − λ(1− b∗(σ))]

σb∗(σ)(β + σ)[βσ − λ(1− b∗(σ))(β + σ)]
(3.5)

E[N ] =
λb∗(σ)σ3 + (1− b∗(σ))[βσ(β + 2σ) + λ(β + σ)2]− λσ(β + σ)2B̂′

σb∗(σ)(β + σ)[βb∗(σ)− λ(1− b∗(σ))(β + σ)]
+

σρ

θ(1− ρ)
(3.6)

Particular Case: We assume that service times are uniformly distributed on the interval (0, 2
µ ) Then A1 =

b∗(σ) = γ
1−exp(−2σ

γ )

2σ A2 = B̂
′

= λγ
1−exp(−2σ

γ )(1+ 2σ
γ )

2σ2
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Fuzzy retrial queue with an unreliable server4

To ensure that the above system has wider applications, we extend it to the fuzzy environment. Suppose
the arrival rate λ,retrial rate θ service rateγ , failure rate σ ,repair rate β are approximately known and can
be represented by the fuzzy sets λ,θ,γ,σ,β respectively.

Let µλ̃(x), µθ̃(r), µγ̃(s), µσ̃(u), µβ̃(v) denote the membership functions of λ, θ,γ,σ,β respectively. Then
we have the following fuzzy sets.

λ̃ = {x, µλ̃(x), xεX}

θ̃ = {r, µθ̃(r), rεR}

γ̃ = {s, µγ̃(s), sεS}

σ̃ = {u, µσ̃(u), uεU}

β̃ = {v, µβ̃(v), vεV }

where X,R,S,U,V are crisp universal sets of arrival rate,retrial rate,service rate,failure rate,repair rate re-
spectively. Let f(x,r,s,u,v) denote the system characteristics of interest. Since λ,θ,γ,σ,β are fuzzy numbers,
f(λ,θ,γ,σ,β) is also a fuzzy number. Based on Zadeh’s extension principle [9],the membership function of the
system characteristic f(λ̃,θ̃,γ̃,σ̃,β̃) is defined as

µf(λ̃,θ̃,γ̃,σ̃,β̃) = sup
x∈X,r∈R,s∈S,u∈U,v∈V

{min {µλ̃(x), µθ̃(r) , µγ̃(s), µσ̃(u), µβ̃(v) /z = f(x, r, s, u, v)} (4.1)

The general service time distribution consider with two service times are exponentially distributed with
parameter µ and uniformly distributed on the interval (0, 2γ ) Particular Case: The service times are uniformly

distributed then b∗(σ) and B̂
′

given by A1 = b∗(σ) = s
2γ [1− exp(−2us )] A2 = B̂

′
= xs

2u2 [1− exp(−2us )(1 + 2u
s )]

A3 = x(1−A1)(u+v)
uvA1

= ρ The system characteristic of interest are expected number of customers in orbit
E[R],mean normal queue size E[Q], and expected number of customers in the system E[N].

From equations (3.1) and (4.1)the membership function of pI is

µp̃I (z sup) =
x∈X,r∈R,s∈S,u∈U,v∈V

{min {µλ̃(x), µθ̃(r) , µγ̃(s), µσ̃(u), µβ̃(v)/z}} (4.2)

where

z =
v

u+ v
− x(1−A1)

uA1

similarly from equations (3.2) and (4.1),the membership function of pF is

µp̃F (z sup) =
x∈X,r∈R,s∈S,u∈U,v∈V

{min{µλ̃(x), µθ̃(r), µγ̃(s), µσ̃(u), µβ̃(v) /z}} (4.3)

where
z =

u

x+ u

Now from equations (3.3) and (4.1), the membership function of pB is

µp̃B (z sup) =
x∈X,r∈R,s∈S,u∈U,v∈V

{min{µλ̃(x), µθ̃(r), µγ̃(s), µσ̃(u), µβ̃(v) /z}} (4.4)

where

z =
x(1−A1)

uA1

From (3.4) and (4.1),the membership function of E[R] is

µ ˜E[R]
(z1 sup) =

x∈X,r∈R,s∈S,u∈U,v∈V
{min {µλ̃(x), µθ̃(r) , µγ̃(s), µσ̃(u), µβ̃(v) /z1}} (4.5)
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where

z1 = (
A3

1−A3
)
( uv
u+v )A1[u− x(1−A1)] + (u+ v)[x(1−A1 − uA2)]

A1[uv − x(1−A1)(u+ v)]
+
u

y

From (3.5) and (4.1),the membership function of E[Q] is

µ ˜E[Q]
(z2 sup) =

x∈X,r∈R,s∈S,u∈U,v∈V
{min {µλ̃(x), µθ̃(r) , µγ̃(s), µσ̃(u), µβ̃(v) /z2}} (4.6)

where

z2 =
xu3A1 − (u+ v)2[uA2 − x(1−A1)]

uA1(u+ v)[uv − x(1−A1)(u+ v)]

From equations (3.6 ) and (4.1 ), the membership function of E[N] is

µ ˜E[N ]
(z3 sup) =

x∈X,r∈R,s∈S,u∈U,v∈V
{min{µλ̃(x), µθ̃(r), µγ̃(s), µσ̃(u), µβ̃(v) /z3}} (4.7)

where

z3 =
xA1[(1−A1)uv(v + 2u) + x(u+ v)2]− xu(u+ v)2A2

uA1(u+ v)[uA1 − x(1−A1)(u+ v)]
+

uA3

y(1−A3)

The membership functions in (4.2),(4.3),(4.4),(4.5),(4.6),(4.7) are not in the usual forms for practical use
and making it very difficult to imagine their shapes.

In this paper we approach the problem using a mathematical programming technique. These parametric
nonlinear programs are developed to find the α cuts of f(λ,θ,γ,σ,β) based on the extension principle.

The parametric nonlinear programming approach5

One approach is to construct the membership function µf(λ̃,θ̃,γ̃,σ̃,β̃) by deriving the α-cuts of µf(λ̃,θ̃,γ̃,σ̃,β̃)
The α-cuts of λ,θ,γ,σ,β are defined respectively as follows.

λ(α) = {xεX/µλ̃(x) ≥ α} (5.1)

θ(α) = {rεR/µθ̃(r) ≥ α} (5.2)

γ(α) = {sεS/µγ̃(s) ≥ α} (5.3)

σ(α) = {uεU/µσ̃(u) ≥ α} (5.4)

β(α) = {vεV/µβ̃(v) ≥ α} (5.5)

The fuzzy arrival rate λ̃, fuzzy retrial rate θ̃,fuzzy service rate γ̃,fuzzy failure rate σ̃, fuzzy repair rate β̃ of
the queueing system are fuzzy numbers. Therefore the α level sets of λ̃, θ̃, γ̃, σ̃, β̃ defined in equations (5.1 -
5.5 ) are crisp intervals which can be expressed in the following forms.

λ(α) = [xL, xU ] = [ min
x∈X
{x/µλ̃(x) ≥ α}, max

x∈X
{x/µλ̃(x) ≥ α} ] (5.6)

θ(α) = [rL, rU ] = [ min
r∈R
{r/µθ̃(r) ≥ α}, max

r∈R
{r/µθ̃(r) ≥ α} (5.7)]

γ(α) = [sL, sU ] = [ min
s∈S
{s/µγ̃(s) ≥ α}, max

s∈S
{s/µγ̃(s) ≥ α} ] (5.8)

σ(α) = [uL, uU ] = [ min
u∈U
{u/µσ̃(u) ≥ α}, max

u∈U
{u/µσ̃(u) ≥ α} (5.9)]

β(α) = [vL, vU ] = [ min
v∈V
{v/µβ̃(v) ≥ α}, max

v∈V
{v/µβ̃(v) ≥ α} (5.10)]
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Fuzzy queues reduces to a family of crisp queues with deterministic inter arrival time, retrial time,service
time, failure rate and repair rate for different α level sets. {λ(α), 0 < α ≤ 1}, {θ(α), 0 < α ≤ 1} , {γ(α), 0 <
α ≤ 1}, {σ(α), 0 < α ≤ 1}, {β(α), 0 < α ≤ 1}

x L
α = min µ−1

λ̃
(α), x V

α = max µ−1
λ̃

(α) (5.11)

r Lα = min µ−1
θ̃

(α), r Vα = max µ−1
θ̃

(α) (5.12)

s Lα = min µ−1γ̃ (α), s Vα = max µ−1γ̃ (α) (5.13)

u L
α = min µ−1σ̃ (α), u V

α = max µ−1σ̃ (α) (5.14)

v L
α = min µ−1

β̃
(α), v V

α = max µ−1
β̃

(α) (5.15)

The α cut approach can be used to develop the membership functions. Based on Zadeh’s extension
principle µÃ(I) is the supremum and minimum over
{µλ̃(x), µθ̃(r) , µγ̃(s), µσ̃(u), µβ̃(v)}
Ã is any performance measures of interest and z=f(x,r,s,u,v) satisfying µÃ(z) = α, 0 < α ≤ 1 The following
five cases :

case (i): (µλ̃(x) = α, µθ̃(r) ≥ α, µγ̃(s) ≥ α, µσ̃(u) ≥ α, µβ̃(v) ≥ α)

case (ii): (µλ̃(x) ≥ α, µθ̃(r) = α, µγ̃(s) ≥ α, µσ̃(u) ≥ α, µβ̃(v) ≥ α)

case (iii): (µλ̃(x) ≥ α, µθ̃(r) ≥ α, µγ̃(s) = α, µσ̃(u) ≥ α, µβ̃(v) ≥ α)

case (iv): (µλ̃(x) ≥ α, µθ̃(r) ≥ α, µγ̃(s) ≥ α, µσ̃(u) = α, µβ̃(v) ≥ α)

case (v): (µλ̃(x) ≥ α, µθ̃(r) ≥ α, µγ̃(s) ≥ α, µσ̃(u) ≥ α, µβ̃(v) = α)

The non-linear programming technique gives the lower and upper bounds of α cuts µ ˜E[R](Z1)
for case(i) as

(E[R])L = min (
A3

1−A3
)
( uv
u+v )A1[u− x(1−A1)] + (u+ v)[x(1−A1 − uA2)]

A1[uv − x(1−A1)(u+ v)]
+
u

y

(E[R])U = max (
A3

1−A3
)
( uv
u+v )A1[u− x(1−A1)] + (u+ v)[x(1−A1 − uA2)]

A1[uv − x(1−A1)(u+ v)]
+
u

y

such that the equation µ ˜E[R]
(z1) = α is true only when either one of the above cases obtained from

equations () and () represent the α-cut of E[R]. If both (E[R])L and (E[R])U in equations (),() are invertible
with respect to α , then the left shape function L[z1] = ((E[R])L)−1

Similarly we calculate the lower and upper bounds of α cuts of µÃ for case (ii),(iii),(iv),(v) such that
xLα ≤ x ≤ xUα , yLα ≤ y ≤ yUα The crisp interval [ (z)Lα (z)Uα ] represents the α cuts of z̃, both (z)Lα and (z)Uα are
invertible w.r.t α then left shape function L(z) = (IL)−1 and right shape function R(z) = (IU )−1 µÃ(z) can

be written as µÃ(z) =

 L(z), if (A)Lα=0 ≤ I ≤ (A)Lα=1 ;
1, if (A)Lα=1 ≤ I ≤ (A)Uα=1 ;
R(z), if (A)Uα=1 ≤ I ≤ (A)Lα=0.

Using the above technique the idle probability

, failure probability ,busy probability given by the lower and upper bounds of α cuts for µp̃I , µp̃F , µp̃B are

(µp̃I )
L
α = min{ v

u+ v
− x(1−A1)

uA1
}

(µp̃I )
U
α = max{ v

u+ v
− x(1−A1)

uA1
}

(µp̃F )Lα = min{ u

u+ x
}

5
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(µp̃F )Uα = max{ u

u+ x
}

(µp̃B )Lα = min{x(1−A1)

uA1
}

(µp̃B )Uα = max{x(1−A1)

uA1
}

with xLα ≤ x ≤ xUα , rLα ≤ r ≤ rUα , s
L
α ≤ s ≤ sUα , uLα ≤ u ≤ uUα , vLα ≤ v ≤ vUα

From which the membership functions of µp̃I (z), µ ˜pFI (z), µp̃B (z) can be constructed as

µp̃I (z) =

 L(z), if (Lp̃I )
L
α=0 ≤ z ≤ (Lp̃I )

L
α=1 ;

1, if (Lp̃I )
L
α=1 ≤ z ≤ (Lp̃I )

U
α=1 ;

R(z), if (Lp̃I )
U
α=1 ≤ z ≤ (Lp̃I )

L
α=0.

µp̃F (z) =

 L(z), if (Lp̃F )Lα=0 ≤ z ≤ (Lp̃F )Lα=1 ;
1, if (Lp̃F )Lα=1 ≤ z ≤ (Lp̃F )Uα=1 ;
R(z), if (Lp̃F )Uα=1 ≤ z ≤ (Lp̃F )Lα=0.

µp̃B (z) =

 L(z), if (Lp̃B )Lα=0 ≤ z ≤ (Lp̃B )Lα=1 ;
1, if (Lp̃B )Lα=1 ≤ z ≤ (Lp̃B )Uα=1 ;
R(z), if (Lp̃B )Uα=1 ≤ z ≤ (Lp̃B )Lα=0.

The membership functions of µ ˜E[R]
, µ ˜E[Q]

, µ ˜E[N ]
can be constructed as

µ ˜E[R]
(z1) =


L(z1), if (L ˜E[R]

)Lα=0 ≤ (z1) ≤ (L ˜E[R]
)Lα=1 ;

1, if (L ˜E[R]
)Lα=1 ≤ (z1) ≤ (L ˜E[R]

)Uα=1 ;

R(z1), if (L ˜E[R]
)Uα=1 ≤ (z1) ≤ (LẼ[R])

L
α=0.

µ ˜E[Q]
(z1) =


L(z2), if (L ˜E[Q]

)Lα=0 ≤ (z2) ≤ (L ˜E[Q]
)Lα=1 ;

1, if (L ˜E[Q]
)Lα=1 ≤ (z2) ≤ (L ˜E[Q]

)Uα=1 ;

R(z2), if (L ˜E[Q]
)Uα=1 ≤ (z2) ≤ (LẼ[Q])

L
α=0.

µ ˜E[N ]
(z3) =


L(z3), if (L ˜E[N ])

L
α=0 ≤ (z3) ≤ (L ˜E[N ]

)Lα=1 ;

1, if (L ˜E[N ]
)Lα=1 ≤ (z3) ≤ (L ˜E[N ]

)Uα=1 ;

R(z3), if (L ˜E[N ]
)Uα=1 ≤ (z3) ≤ (LẼ[N ])

L
α=0.

Numerical example6

If the arrival rate λ, the retrial rate θ,the service rate γ,the failure rate σ, the repair rate β are trape-
zoidal fuzzy numbers per unit time described by λ̃ = [3, 4, 5, 6], θ̃ = [14, 15, 16, 17], γ̃ = [25, 26, 27, 28], σ̃ =

[36, 37, 38, 39], β̃ = [46, 47, 48, 49]. µÃ(z) can be written as µÃ(z) =

 L(z), if (A)Lα=0 ≤ I ≤ (A)Lα=1 ;
1, if (A)Lα=1 ≤ I ≤ (A)Uα=1 ;
R(z), if (A)Uα=1 ≤ I ≤ (A)Lα=0.

With the help of Matlab , we perform α - cuts of arrival rate and service rate and fuzzy expected number of
customers in queue at eleven distinct α levels: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. Crisp intervals
for fuzzy expected number of customers in orbit (E[R]) at different possibilistic levels are presented in table.
Similarly other performance measure such as expected number of customers in queue (E[Q]), number of
customers in system (E[N]) also derived in the table.

The α - cut represent the possibility that these four performance measure will lie in the associated range.
Specially, α = 0 the range, the performance measures could appear and for α = 1 the range,the performance
measures are likely to be.

For example, while these four performance measures are fuzzy, the most likely value of E[R] falls between
1.8317 and 4.0525 and its value is impossible to fall outside the range of 0.9462 and 11.1282; it is definitely
possible that the expected number of customers in queue E[Q] falls between 0.1323 and 0.2220, and it will
never fall below 0.0767 and exceed 0.3676 ;expected number of customers in the system E[N] falls between
2.3138 and 5.2849, and it will never fall below 1.1930 or exceed 24.6253. The above information will be very
useful for designing a queueing system.
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Table 1: The α-cuts of E[R],E[Q],E[N]

α E[N]E[Q]E[R]

[1.1930 , 24.6253][0.0767 , 0.3676][0.9462 , 11.1282]0.0
[1.2705 , 19.0044][0.0812 , 0.3496][1.0067 , 9.9279]0.1
[1.3537 , 15.3592][0.0858 , 0.3325][1.0719 , 8.8870]0.2
[1.4431 , 12.7951][0.0907 , 0.3162][1.1422 , 7.9805]0.3
[1.5395 , 10.8910][0.0959 , 0.3007][1.2181 , 7.1878]0.4
[1.6436 , 9.4211][0.1012 , 0.2859][1.3003 , 6.4922]0.5
[1.7562 , 8.2524][0.1069 , 0.2719][1.3894 , 5.8796]0.6
[1.8783 , 7.3015][0.1128 , 0.2585][1.4862 , 5.3384]0.7
[2.0110 , 6.5135][0.1190 , 0.2457][1.5915 , 4.8588]0.8
[2.1557 , 5.8502][0.1255 , 0.2336][1.7063 , 4.4324]0.9
[2.3138 , 5.2849][0.1323 , 0.2220][1.8317 , 4.0525]1.0

Figure 1: Expected number of customers in orbit
E[R]

incustomersofnumberExpectedFigure 2:
queue E[Q]

Figure 3: Expected number of customers in sys-
tem E[N]

Conclusion7

This paper applied the concept of α-cuts and Zadeh’s extension principle to transform a fuzzy queue with
an unreliable server into a family of crisp queues that can be described by a set of parametric nonlinear
programs(NLP).Due to the complexity of four fuzzy parameters,the closed form for the corresponding mem-
bership function can not be explicitly derived by taking the inverse of its α cuts at different possibility levels.
Numerical solutions for different α values were calculated to approximate the membership functions by NLP.
These results are significant as well as useful for system designers. Numerical example illustrated that the
curve is trapezoidal form.
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