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1. Introduction

Fuzzy set theory was proposed by Lotifi A. Zadeh [11] and it has extensive ap-
plications in various fields. In 1999, Molodstov[7] introduced the novel concept of
soft sets and established the fundamental results of the new theory. In 2003, Maji
et al.[5] studied some properties of soft sets. Pei and Miao [9] and Chen [1]et al.,
improved the work of Maji et al. [4, 5].In [2], Jun et al., introduced a new notion,
of cubic set by using a fuzzy set and an interval-valued fuzzy set, and investigate
several properties.

Muhiuddin and Al-roqi [8], introduced the notions of internal, external cubic
soft sets, P-cubic (R-cubic) soft subsets, R-union(R-intersection, P-union and P-
intersection) of cubic soft sets and the complement of a cubic soft set. They in-
vestigated several related properties and applied the notion of cubic soft sets to
BCK/BCl-algebras.

Fuzzy matrix was introduced by Thomason [10] and the concept of uncertainty
was discussed by using fuzzy matrices. Different concepts and ideas of fuzzy ma-
trices have been given earlier mainly by Kim, Meenakshi and Thomson [3, 6, 10].
Fuzzy matrix plays a vital role in fuzzy modeling, fuzzy diagnosis and fuzzy con-
trols. It also has applications in fields like psychology, medicine, economics and
sociology.

In this paper, we introduce notion of cubic soft matrix. We defined internal
cubic soft matrix, external cubic soft matrix, P-(R-)order, P-(R-)union, P-(R-)
intersection, P-OR, R-OR, P-AND and R-AND of cubic soft matrix and their
properties are discussed.

2. Preliminaries

In this section first we review some basic concepts and definitions.
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DEFINITION 2.1 [8] Let U be an initial universal set and E be a set of parameters.
A cubic soft set over U is defined to be a pair (%, A) where F is a mapping from
A to P(U) and A C E. Then the pair (F,A) can be represented as,

(7,A) = {9(6)/6 € A} where F(e) = {<u,f~le(u),>\e(u)> /u eUec A} is a
cubic soft set in which Ac(u) is the interval valued fuzzy set and \o(u) is a fuzzy

set.

DEFINITION 2.2 [8] Let U be an initial universal set and E be a set of parameters.
A cubic soft set (F,A) over U is said to be an internal cubic soft set if
A7 (u) < Ae(u) < A (u) for all e € A and for all u € U.

DEFINITION 2.3 [8] Let U be an initial universal set and E be a set of parameters.
A cubic soft set (F,A) over U is said to be an external cubic soft set if

Ae(u) ¢ (A7 (u), AX(u)) for alle € A and for all u € U.

DEFINITION 2.4 [8] Let U be an initial universal set and E be a set of parameters.
For any subsets A and B of E, (%#,A) and (4, B) be cubic soft sets over U.
(1) The R-union of (%, A) and (¥, B) is a cubic soft set (7,C)
where C = AU B and

F (e) ife € A/B,
He) =< 9 (e) ife € B/A,
F(e)Ur¥Y(e) ifec ANB

for all e € C. This is denoted by (#,C) = (%,A) Ur (¢, B).
(2) The R-intersection of (F,A) and (¢4, B) is a cubic soft set (H#,C)
where C = AN B and

F(e) ife € A/B,
He) =< Y (e) ife € B/A,
Fe)NrY(e) ifec ANB

for all e € C. This is denoted by (7,C) = (#,A) Nr (¥, B).

DEFINITION 2.5 [8] Let U be an initial universal set and E be a set of parameters.
For any subsets A and B of E, (#,A) and (¢, B) be cubic soft sets over U.

(1) The P-union of (#,A) and (¥, B) is a cubic soft set (H,C)
where C = AU B and

F(e) ife € A/B,
He) =< Y (e) ife € B/A,
Fe)UpY(e) ifec ANB

for all e € C. This is denoted by (7,C) = (¥,A) Up (¥4, B).
(2) The P-intersection of (F,A) and (¢, B) is a cubic soft set (H,C)
where C'= AN B and

F(e) ife € A/B,
He) =9 (e) ife € B/A,
Fe)NpY(e) ifec ANB
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for all e € C. This is denoted by (,C) = (F,A) Np (¥, B).

DEFINITION 2.6 [8] Let U be an initial universal set and E be a set of parameters.
For any subsets A and B of E, (%#,A) and (4, B) be cubic soft sets over U.

(1) R— OR is denoted by (., A) Vg (¥4, B) and defined as
(Z,A) VR (9,B) = (A, A x B) where 7 (a,) = F(a) Ur 9(B) for all
(a, ) € Ax B.
(2) R— AND is denoted by (#,A) Ar (4, B) and defined as
(Z,A) Ar (9,B) = (A, A x B) where 7 (a,) = F(a) Ng 4(B) for all
(o, ) € Ax B.
(3) P— OR is denoted by (#,A)Vp (¥4,B) and defined as
(Z,A)Vp (¥9,B) = (#,A x B) where #(a,) = F(a) Up 4(B) for all
(a, ) € A x B.
(4) P — AND is denoted by (F,A) Ap (¥, B) and defined as
(Z,A)A\p (¥9,B) = (A, A x B) where #(a,) = F(a) Np4(B) for all
(a, ) € Ax B.
DEFINITION 2.7 [8] Let U be an initial universal set and E be a set of parameters.
The complement of a cubic soft set(.F, A) over U is denoted by (F, A)¢ and defined
by (F,A) = (F¢,-A) where ¢ : =A - E€P{U) and (#,A)¢ = {ﬁ’c(e)/e € A}

where F¢(e) = {<u,f~1§(u),)\§(u)> /u elUec A} .

DEFINITION 2.8 [6] A matriz A = [aij]mxn is said to be fuzzy matriz if
aijE[O,l],lgigm and 1 < j < n.

DEFINITION 2.9 [6] For any two fuzzy matrices A = [a;;], B = [bi;] and a scalar
k € F. Then,

(i) A+ B = [sup {aij, bij}] = V]a, bij].

(it) AB = [sup {inf {aij,bij} }] = V {A[a, bil} -

(113 )k A = [an {k‘, aij}] = /\[k‘, aij].

DEFINITION 2.10 [6] For any matriz A = [a;j;], the transpose is obtained by inter-
changing its rows and columns and is denoted by AT = laji] for all i, j.

3. Cubic Soft Matrices (CSM)

DEFINITION 3.1 Let U = {uy,ug, ..., un} be an initial universal set and
E ={e1,e,....,en} be a set of parameters. Let A C E. Then cubic soft set (F,A)
can be expressed in matriz form as

ail a2 - Gip
a21 a2 --+ A2p
H
A® = [aij] = . . .
aml Qm2 *°* Amn

such that A® = [a;;] = </~lej (ui), Ae, (ul)> = <f~1gj,>\gj> which is called an m x n
cubic soft matriz(shortly CS-matriz or CSM) of the cubic soft set (%, A), where
1=1,2,3,....mand j=1,2,3,...,n.

Ezample 3.2 Let U = {uj,u2,us,us} is a set of cars and A = {e1,ez,e3} is a set
of parameters, which stands for mileage, engine and prize respectively. Then cubic
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soft set is defined as

(F,A) = { le1, (u1, {[0.5,0.8],0.6)), (uz, ([0.1,0.7),0.5)), (us, {[0.2,0.6],0.9)), (us, {[0.3,0.9],0.4))] ,
le2, (u1, ([0.2,0.5],0.3)), (ua, ([0.3,0.6],0.7)), (us, ([0.2,0.7],0.2)), (w4, ([0.3,0.5],0.1))] ,

[e3, (u1, ([0.1,0.8],0.4)), (ug, ([0.6,0.7],0.9)), (us, ([0.2,0.9],0.5)), (us, ([0.3,0.7],0.4))] }

Then the CS-matrix A® is written as,

0.5,0.8],0.6) ([0.2,0.5],0.3) ([0.1,0.8],0.4
4% _ [{[0.1,0.7],0.5) ([0.3,0.6],0.7) {0.6,0.7],0.9
= 1{0.2,0.6],0.7) {[0.2,0.7],0.2} {[0.2,0.9],0.5
0.3,0.9],0.4) {[0.3,0.5],0.1) {[0.3,0.7],0.4

DEFINITION 3.3 A cubic soft matrixz of order 1 X n is called a row-cubic soft
matriz. i.e., The universal set contains only one element.

Ezample 3.4 Let U = {u1} and A = {e1,e2,e3}. Then(#, A) be a cubic soft set
is defined as,

(7, A) ={[e1, (u1, ([0.4,0.8],0.5))], [e2, (u1, ([0.5,0.9],0.7))], [e3, (u1, ([0.2,0.6],0.1))]}
Then, the CS-matrix A® is given by,

A® = [([0.4,0.8],0.5) ([0.5,0.9],0.7) {[0.2,0.6],0.1)] .

DEFINITION 3.5 A cubic soft matriz of order m x 1 is called a column-cubic soft
matriz. i.e., The parameter set contains only one parameter.

Ezample 3.6 Let U = {uy,uz,us,ug} and A = {e1}.
Then (%, A) be a cubic soft set as,

(7, 4) = { [e, (un, 10.1,0.4],0.5)), (uz, {[0.3,0.7), 1)), (s, ([0.5,0.8],0.6)), (u, (10.4,0.3],0.3))] |

Then, the CS-matrix A® is given by,

DEFINITION 3.7 A cubic soft matriz of order m X n is said to be a square-cubic
soft matriz if m = n i.e., the number of rows and the number of columns are equal.

Ezample 3.8 Let U = {uj,u2,us} and A = {e1,ez,e3}. Then (%, A) be a cubic
soft set is defined as,

I

(7, A) = { le1, (u1, ([0.7,0.9], 0.6)), (us, ([0.4,0.8],0.1)), (us, {[0.1,0.6], 0.6))
lea, (u1, ([0.2,0.8],0.6)), (ug, ([0.2,0.7],0.3)), (us, ([0.1,0.8],0.5))],

le3, (ut, ([0.2,1],0.4)), (us, ([0.4,0.8],0.1)), (us, ([0.1,0.9],0.2))] }
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Then the CS-matrix A® is given by,
[0 2,1],0
0.4,0.8],
0.1,0.9

DEFINITION 3.9 The transpose of a cubic soft matriz AD

0.7,0.9],0.6) ([0.2,0.8],0.6
AB = {{[0.4,0.8],0.1) {[0.2,0.7],0.3
0.1,0.6],0.6) ([0.1,0.8],0.5

]

s obtained by

m><n

interchanging its rows and colummns. It is denoted by (AE)nxm

Ezxample 3.10 Consider the example 3.8, then its transpose cubic soft matrix as,
0.7,0.9], 6 ,0.1 ,0.6
= [(|0.2,0.8], ,0.3 ,0.5)] .
,0.1 ,0.2

(0.2,1],0. 4)
DEFINITION 3.11 A square cubic soft matriz A® of order n x n is said to be a
symmetric cubic soft matrix, if its transpose be equal to it, i.e., (AEH)T =A%,

Example 3.12 Let U = {u1,ug,us} and A = {e1,e2,e3}. Then (.F, A) be a cubic
soft set is defined as,

Gb

0.4,0.8
0.2,0.7
0.4,0.8

0.1,0.6
0.1,0.8
0.1,0.9

(F#,A) = { le1, (u1,([0.2,0.7],0.1)), (us2, ([0.3,0.5],0.9)), (us, ([0.5, 1], 0.6))]
le2, (u1, ([0.3,0.5],0.9)), (uz, ([0.1,0.3],0.3)), (us, ([0.5,0.9],0.5))] ,

le3, (u1, ([0.5,1],0.6)), (us, {[0.5,0.9],0.5)), (us, ([0.1,0.9],0.2))] }

Then the symmetric matrix A® is given by,

0.2,0.7],0.1) ([0.3,0.5],0.9 <[o 5,1],0 6>
AB 0.3,0.5],0.9) {[0.1,0.3],0.3) ([0.5,0.9],0.5
{[0.5,1],0.6)" {[0.5,0.9],0.5) {[0.1,0.9],0.2

DEFINITION 3.13 Let A® = [aij] € CSMyxpn. Then A® is an internal cubic soft
matriz (ICSM), if Af; < Af; < A?j for all i, j.

Ezample 3.1/ Let U = {u1,u2,u3,usand A = {ej,e2,e3}. Then (F,A) be a
cubic soft set is defined as,

(7, A) = { le1, (ur, ([0.6,0.8], 0.5)), (uz, {[0.4,0.9],0.7)), (us, {[0.5,0.9],0.5)), (us, ([0.3,0.7],0.5))]
lea, (u1, ([0.5,0.9], 0.5)), (uz, {[0.3,0.8],0.6)), (us, {[0.7, 1], 0.8)), (ua, (0.6, 0.8],0.75))]

les, (u1, {[0.4,0.7],0.6)), (uz, ([0.3,0.8],0.5)), (us, ([0.2,0.5],0.35)), (us, ([0.2,0.5],0.3))] }

Then the ICSM A® is given as,
0.6,0.8

m_ (04,09

A= Nj0.5.0.9

0.3,0.7

DEFINITION 3.15 Let A® = [alj] € CSMyxn. Then A® is an external cubic soft
matriz (ECSM), if X¢; ¢ (A%, A% for all i, j.
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Ezample 3.16 Let U = {uq,u2,us,us} and E = {e1,ea,e3}.Then (F,A) be a
cubic soft set is defined as,

(7, 4) = { [ex, (w1, {[0.3,0.6],0.8)), (12, {[0.6, 1],0.1)), (u, [0.4,0.9],0.2)), (s, {[0.2,0.6],0.65))],
le2, (u1, ([0.6,0.9], 1)), (ug, ([0.3,0.6],0.75)), (us, ([0.2,0.7],0.1)), (u4, ([0.6,0.9],0.4))] ,

les, (u1,([0.2,0.6],0.6)), (us2, ([0.1,0.9],1)), (us, ([0.4,0.5],0.7)), (u4, ([0.2,0.6],0.75))] }

Then the ECSM A% is given by,

([0.3,0.6],0.8)  ([0.6,0.9],1) ([0.2,0.6],0.6)

Ve {[0.6,1],0.1) (]0.3,0.6],0.75) (]0.1,0.9],1)
=1 ([0.4,0.9],0.2) ([0.2,0.7],0.1) ([0.4,0.5],0.7)
(10.2,0.6],0.65) {[0.6,0.9],0.4) ([0.2,0.6],0.75)

DEFINITION 3.17 Let A = [aij] € CSMpxn. Then [ai;] is called
i) A zero CS-matriz, denoted by 0 if la;j] = ([0,0],0) for all i, j.
ii) A universal CS-matriz, denoted by 1 if [a;;] = ([1,1],1) for all i, j.

Ezample 3.18 Let U = {u1,ug,us} be the universal set and E = {e1, e, e3, €4, €5}
be the set of parameters. Let A, B C E. Then

(97 A) = { [617 (u17 <[07 0]70>)7 (u27 <[07O]7 0>)7 (u37 <[07 0]7 O>)] )
[62, (ula <[07 0]70>)7 (u2a <[O’O]v 0>)7 (USa <[Oa 0]7 O>)] )

s, (w1, ([0, 01,0)), (uz, ([0,0], 0)), (us, {[0,0],0))] }
and

(g\?B) = { [617 (uh <[17 1]) 1>)7 (u27 <[1’ 1]7 1>)7 (USa <[17 1]7 1>)] ’
[627 (U1, <[17 1]7 1>)> (u2a <[17 1]7 1>)7 (’LL3, <[1a 1]7 1>)] )

s, (ur, ([1,1], 1)), Cuz, ([1, 1, 1)), (s, 411,11, 1)) -

A zero CS-matrix A® is given by,

0,01, 0) ([0,0],0) {[0,0],0
AB = {{]0,0],0) ([0,0],0) ([0,0],0}] .
0,0],0) ([0,0],0) {[0,0],0

A universal CS-matrix A® is given by,

1,1],1) ([1,1],1) ([1,1],1
B® = | ([1,1],1) {[1,1],1) {[1,1],1
1,11, 1% {1, 1], 1) (1,11

DEFINITION 3.19 Let A% = [@jlmxn, BE = [bijlmxn be the two cubic soft matriz
of order m x n. Then P-order matriz is denoted and defined as [a;j] Cp [bi;],

if AL < BY and XY < pb; for all i, j.
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Ezample 3.20 Let A® and B® be the cubic soft matrices are defined as follows,

0.2,0.5],0.7) ([0.1,0.4],0.2) {[0.4,0.7],0.5

AB = 0.3,0.6],0.5) (|0.6,0.9],0.4) (|0.6,0.9],0.7

~ 1(]0.4,0.7],0.5) ([0.7,1],0.8) ([0.3,0.6],0.5

0.5,0.8],0.6) ([0.3,0.6],0.5) (|0.2,0.5],0.7

and

0.3,0.6],0.8) (|0.2,0.5],0.3) ([0.5,0.8],0.6

BE — 0.4,0.7],0.6) (|0.6,0.9],0.5) (|0.7,0.9],0.8

~ 1(]0.5,0.8],0.5) ([0.7,1],0.8) ([0.4,0.7],0.6

0.6,0.9],0.7) ([0.4,0.7],0.6) ([0.3,0.6],0.7

Then A® Cp BE.

DEFINITION 3.21 Let A® = [@ijlmxn, BE = [bijlmxn be the two cubic soft matriz
of order m x n. Then R-order matriz is denoted and defined as [a;;] Cr [bij],
if AY; < BY and Y > pb; for all i, j.

Ezample 3.22 Let A® and B® be the cubic soft matrices are defined as follows,

0.3,0.6],0.7) ([0.1,0.4],0.6) ([0.2,0.5],0.3)

;- 0.4,0.7],0.3) ([0.2,0.5},0.2) ([0.6,0.9],1)

~ 1¢([0.5,0.8],0.4) ([0.6,0.9],0.2) ([0.5,0.8],0.7

0.6,0.9],0.5) (]0.4,0.7],0.6) ([0.1,0.4],0.9

and

0.4,0.7],0.6) ([0.2,0.5],0.5) {([0.3,0.6],0.2

BE _ 0.5,0.8],0.2) ([0.3,0.6],0.1) ([0.6,0.9],0.6

~ 1(]0.6,0.9],0.3) {([0.7,0.9],0.2) ([0.6,0.9],0.5

0.7,0.9],0.4) ([0.5,0.8],0.5) ([0.4,0.7],0.9

Then A® Cp BY.

DEFINITION 3.23 Let A% = [@ij)mxn; BE = [bijlmxn be the two cubic soft matrix
of order m x n. Then equal matriz is denoted and defined as [a;j] = [bi;],

if flg = ijf and \j; = ng for all i, j.

Ezample 3.24 Let A® and B® be the cubic soft matrices is defined as follows,

0.5,0.8],0.2) ([0.3,0.6],0.1) ([0.6,0.9],0.6
A® = [{0.6,0.9],0.3) ([0.7,0.9],0.2) {[0.6,0.9],0.5
0.7,0.9],0.4) {[0.5,0.8],0.5) ([0.4,0.7],0.9
and
0.5,0.8],0.2) ([0.3,0.6],0.1) ([0.6,0.9],0.6
BE — 0.6,0.9/,0.3) (|0.7,0.9],0.2) (|0.6,0.9],0.5) | .
0.7,0.9],0.4) {[0.5,0.8],0.5) {[0.4,0.7],0.9
Then A® = B®.
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4. P-union, P-intersection, R-union and R-intersection of cubic soft matrices

In this section we have defined P-union, P-intersection, R-union and R-intersection
of any two cubic soft matrices and investigate some of its properties.
B} o Ta— Tat E o >b— bt
DEFINITION 4.1 Let A% = ([A2, A%, X8 ), B® = ([BYy , BY], ;)
€ CSM,,xn. Then
(1) P-union of A® and B® is denoted by A® vp B® and defined as
ABvp BE = 08 if OB = [¢;] = <ij,wfj>, where C’fj = max {A%,B%}

and gy = masx { NGy} for all i, j.

(2) P-intersection of A® and B® is denoted by A® Ap B® and defined as
AB Ap BB = CB i C® = [cij] = <C~'f],%c]>, where CNJ'ZC] = min {flgj,éfj}
and 7;; = min {)\?j,,u?j} for all 4, 7.

(8) R-union of A® and B® is denoted by A® vp B® and defined as
AB VR BE =08 if C® = [¢;] = <C~'fj,fyfj>, where C’fj = max {flg’j,Bg’j}
and 7;; = min {)\fj,,u?j} for all 1, 7.
(4) R-intersection of A® and B® is denoted by A® Ap B® and defined as
AB N BE = OB if OF = [¢;] = <ij,'yicj>, where Cf; = min {A%,B%}
and v;; = max {)\%, u?j} for all i, j.
Ezample 4.2 Let A® and B® be two cubic soft matrices of order 4 x 3 and defined
as follows.

0.3,0.6],0.6) ([0.1,0.4],0.5) ([0.5,0.8],0.7

A — 0.4,0.7],0.7) ([0.7,1],0.4) ([0.6,0.9],0.5

— 1([0.6,0.9],0.8) ([0.4,0.7],0.6) ([0.4,0.7],0.6

0.2,0.5],0.3) (]0.5,0.8],0.7) ([0.3,0.6],0.8

and

0.4,0.5],0.7) ([0.4,0.6],0.6) ([0.6,0.9],0.1)

BB — 0.5,0.6],0.5) ([0.5,0.7],0.7) ([0.7,1],0.4)

~ 1(]0.7,0.8],0.7) ([0.7,1],0.5) ([0.5,0.8],0.3

0.3,0.4],0.6) ([0.4,0.7],0.8) (|0.4,0.7],0.9

0.4,0.6],0.7) ([0.4,0.6],0. .6,0.9],0.
I 0.5,0.7],0.7) {[0.7,1],0.7)" {[0.7,1],0.5)
~ 1(]0.7,0.9],0.8) ([0.7,1],0.6) ([0.5,0.8],0.6
0.3,0.5],0.6) ([0.5,0.8],0.8) {[0.4,0.7],0.9

(2) (P-intersection) A® Ap B¥ = ¥ is defined as,

0.3,0.5],0.6) ([0.1,0.4],0.5) ([0.5,0.8],0.1
o 0.4,0.6],0.5) {[0.5,0.7],0.4) {[0.6,0.9],0.4
~ 1(]0.6,0.8],0.7) (|0.4,0.7],0.5) (|0.4,0.7],0.3
0.2,0.4},0.3) ({0.4,0.7],0.7) (]0.3,0.6],0.8
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(3) (R-union) A% v B® = OB is defined as,

0.4,0.6],0.6) ([0.4,0.6],0.5) ([0.6,0.9],0.1)

o _ [1[05,0.7],05) ([0.7,1],0.4)" ([0.7,1],0.4)
~1(]0.7,0.9],0.7) (|0.7,1],0.5) (]|0.5,0.8],0.3

0.3,0.5,0.3) ([0.5,0.8],0.7) {[0.4,0.7],0.8

(4) (R-intersection) A® Ar B = C% is defined as,

0.3,0.5,0.7) ([0.1,0.4],0.6) ([0.5,0.8],0.7

o® — |404,0.6],0.7) (10.5,0.7],0.7) ([0.6,0.9],0.5

= 1{0.6,0.8],0.8) {[0.4,0.7]. 0.6} {[0.4.0.7],0.6

0.2,0.4],0.6) ([0.4,0.7],0.8) ([0.3,0.6],0.9

PROPOSITION 4.3 Let A®, BE C% DB ¢ CSM,,«n. Then the following hold.

(1) If AB Cp B® and B® Cp CB, then A® Cp CB.
(2) If AB Cp B® and A® Cp CB, then A® Cp (B Ap CP).
(3) If AB Cp B® and C® Cp BB, then (A® vp CF Cp BF).
(4) If AB Cp B® and C® Cp D®, then
i) AB Vp CcH Cp BH Vp DH.
i) AB Ap C® Cp BE Ap DE,
(5) If A® Cp BF and B® Cir CB, then A® Cp CF.
(6) If A® Cr B® and A® Cp C%, then A® Cr (B® A CF).
(7) If AB Cr B® and C® Cg B®, then (A% vy C%®) Cp B,
(8) If AB Cr B® and C® Cg D®, then
i) ABVvr C® Cp B¥ vy DE,
i) AB N CB Cr BB AR DB.
Proof Straightforward. [ |
DEFINITION 4.4 Let A® = [aij] € CSMyxn. Then the complement of the cubic
soft matriz is denoted by (A®)¢ = [b;;], if [bi;] = <[1 - flgj, 1- fl?j_], 1-— )\fj>
for all 1, 7.
Example /.5 Let

0.3,0
m_ [(0.4,0.
AT = 110.6.0

0.2.0

(AEE)C —

THEOREM 4.6 Let A® = [a;;] € ICSMyxn. Then (AB) € ICS M,y
Proof Let A® = [aij] € ICSMy,xpn. This implies that,

[1%_ <A < fl?;for all i, 5.

Then 1 — A% >1- X% >1— A% for all i, j.
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1— A% <12 <1— A% for all i, j.

Thus (A®)¢ € ICSM,xn. [ |
THEOREM 4.7 Let A® = [a;;] € ECSMnxyn. Then (AB)¢ € ECSM,xp.

Proof Let A® = [a;;] € ECSM,,xp. This implies that, A%, L ¢ (Af}j ,A?j) for all i, j.
+ +
Since \j; & (A?] ,Af] ) and~0 Af] Af] 1. So we have7
< A
or )
ALT <A
This implies, 1 — \f; > 1 — flg”j_ or1— /lef = 1— A
Thus 1 — A% ¢ ((1 — A, (- Agj)) for all i, j.
Therefore (A®)¢ € ECSM,,xn. [ ]
THEOREM 4.8 Let A® B® ¢ ICSM,, . Then
(1) A vp BT ¢ ICSM 5.
(2) AB Ap BE € ICSM,xn.

Proof (1) Let AT and B® € ICSM,,x.

For
A = [a;;], we have {lfj_ <A J < A;‘; for allij
B¥ = [b;;], we have B, < p?; < BY for all i j.
Then maX{A” , } < maX{)\j,uZ]} maX{AU , f’;} for all i, j. Now by

Definition 4.1, we have A8 vp BE = OF — Cij = <Cij,’yfj> , where

Cy; = max{AU, } for all i, j.

Hence A% vp BE € ICSMyyxn. (2) Let A® Ap BE = CF = [cij] = <C’J,’yw>
where é’fj = mln{Afj,Bb} and vj; = min{\
AB BB ¢ ICSM,,yn.

} and vf; = Inax{)\”,,uw

w,u”} for all i, j. Also given that

For

A% = [a;;], we have flg{ <A < A“ for all i j

BB = [bij], we have Bl-’-f <p b < BY for allij.
This implies, mln{A” , } < mm{)\w,uz]} < mm{Af;,Bb } for all i, j. Hence
OF = AT np BB € [COSMyn |

The following example shows that the P-union and P-intersection of ECSMs need
not be an ECSM.

o [([03.07,0. ([0.1,0.5,0.7
Example 4.9 Let A®= MO.4,0.8],0.2§ <[04 1],0.3) and
s [(0.7,0.9],0.4) ([0.6,0.8],0.3
Br= [é 0.3,0.5} osi é[o 2,0.4],0.7%} - Then
B, pE [([0.7,0.9],0.4) ([0.6,0.8],0.7)
(A= vp B MOA, 0.8], 0 8§ (0.4,1],0.7)" | 18 not an ECSM.
& @ [([0.3,0.7],0.1) (0.1,0.5],0.3
(2)A" Ap B mo 370_5]70 2; é{O.Q,O 4],0 3§] is not an ECSM.

The following example shows that the R-union and R-intersection of ICSMs need
not be an ICSM.
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0.2,0.9],0.4) ([0.6,0.9],0.7
Brample 4.10 Let A%= {E[O.l,o.&s],o.ﬁ <[<[o A, 1],]0.6)>] and
0.7,1],0.8) ([0.1,0.8],0.5
B~ [(f([).4,0.E]J],O.(>S> §[0.2,0.7],0.4ﬂ - Then

0 4) <[0'6’O'9]’0'5>] is not an ICSM.
m & [(0.2,0.9],0.8) ([0.1,0.8],0.7
(2)A" A B™ = [§[0-170-5]70 ; é{O‘Z . i] is not an ICSM.

The following example shows that the R-union and R-intersection of ECSMs
need not be an ECSM.

a_ [(0.2,0.4],0.7) ([0.4,0.6],0.8
Ezample 4.11 (1) Let A%= “0.3,0.7},0.9? 2[0.3,0.8],0.2;} and
0.

me= (50503 Gateh

2 B _ [([0.6,0.8],0.7) ([0.4,0.6],0.6
Then A™ Vi B™ = [é[OB,O.?J,OB; é[O.B, 0.8],0 2” is not an ECSM.

82]’8 ;lﬂ is not an ECSM.

THEOREM 4.12 Let A®, B® € ICSM,,«n, such that
for all i, j. Then, the R-union of A® and BEE 1s also an ICSM.

Proof Let A®, B® ¢ ICSM,,«p.
For

]gA‘ﬁ forallij
bng

A% we have A% < A
<

B we have BI?-* for all 1]

Then, min{\?

Also given that max{A%
It follows that,

max{ A%

} < maX{AﬁBH}
} < min{A

1]7 /"L’Lj

5B U,u”} for all i, j.

& B } mln{)\w,uz]} max{AU ,Bb+} for all i, j.

Thus A® vz BE = CF is an ICSM if max{A%; } min{\? } for all i, j.m

iJ ’ l]”u'U

THEOREM 4.13 Let AB, B € ICSM,,«n, satisfying the following inequality
ma‘X{Agjv Bb } maX{)‘zga /’Lz]}
for all 4, j. Then A® Ap BE € ICSM,,xn.

Proof Let A®, B® ¢ IC'SM,,+,. Then by Definition 3.13,
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fl‘-l )\“ fl and Bl?-f < b < BYY.
This implies that mln{AU ) } < max{\};, ,ulj}
Also since A Agr BT = C® = [¢;)] = <C'J,'yw>, where C’c = min{A¢

v5; = max{A; ,,uZ -} for all i, j. Then, mln{A“+ Bb+} max{/\w,u”}
Agam by the Deﬁnltlon 3.13,

min{ A%

Zj’

} < max{)\l],,uw} min{ A% Bb+}

’L]’ 1)

HenceA® Ap BE € ICSM,, 5.

THEOREM 4.14 Let A® BB € ICSM,,«n, such that
min{\¢ < max{Aw , }

for all i, j. Then AB VR BE € ECSM,,xn.

ij) “w

Proof Let A% B® ¢ ICSM,,x,. By the Definition 3.13,
AgT <N < A2 and BY < pb < BY

177

Since A® vp BE = CB = [¢)] = <C’U,’yw>, where C‘fj = max{A%, BY,

V5 = mln{)\”,ﬂw} for all i, j. By hypothesis,

min{ A, ,uw} max{A” , }

This implies that

min{\y;, u;} ¢ ((Af}] u Bg’j)_, ([1;1] U Bf-’j)Jr) (max{ A% v h max{ A%

i 7
Hence A® vi B® is an EC'SM.

THEOREM 4.15 Let A® BB ¢ ICSM,,«n, such that

} > max{A% Bb+ }

max{Ay A

W“U

for all i, j. Then A® Ag BB is an ECSM,,xn.

Proof Let A®, B® ¢ ICSM,,,. Then by the Definition 3.13,
A2T <N < A% and BY < pb < BY

7,_]’

} for all i, j. Thus max{)\w,uw} mln{Afj,BbJr}.

Since A¥ Agp BF = C® = [¢;)] = <CU,%J>, where C’?- = min{A%, B,

V5 = max{)\w, ,ulj
This implies that

max{\g,ut;} ¢ (A4 U BY)~, (A% U BY)*) = (min{Ag
Hence A® Ap B® is an EC'SM.

i , B } mln{A

THEOREM 4.16 Let A® BE € CSM,,xn, such that
min {maX{AU , } maX{AU ,Bbf}} = min{/\?j,ugj} =

} min{ A%

1]7

max {mln{AU ,

and ICSM.

)

}. For each e; € E, take

Proof Consider A® Ap BE = C® = [¢;;] = <C~'Cj,fyfj> , where C’C — min{ A%

and rY’L.] = mln{AZ.]?lLLl‘]
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aj = mln{maX{AU , } max{AZ] ’le');}}
Bj = max {mln{A” , } mln{A” ,Bg’;}} .

Then «; is one of Af] , Bj; ,Aa+ and Bb We consider o = fl;?]f or Af}j only, as the
~b— ~ b+ - P
remaining cases are similar to this one. If aj = AU , then szj < ij < A% < A%

and if B; = Bf’j , then AZ- = = mln{)\m,,uw} =3 = BI#. Thus
b= Ay < Ay

Bf’; < Bb = min{\¢ AR

ij “ZJ
which implies that mln{/\u,,u”} = BI?-+ = (Afj N BZ)‘*‘ Hence
mln{)\”,,uw} ¢ (([1“ N Bb»)_, (flf] N Bg’j)*') and

(Aa ﬁBb) mln{)\w,,um} (Aa ﬂBbﬁ.

If oy = AZ7, then Bl < Agj < BY and so min{AY, b} = Agj = (A%, N BT
Hence
min{A%, 1t} ¢ ((jw. N B, (A4 N ng) and
a b Aa b
(Aij N Bi )" < mln{)‘zgaﬂzg} < (Aij N Bij)+'
Consequently, we note that A® Ap BE is both ECSM and ICSM. [ |

THEOREM 4.17 Let AEE BY ¢ CS M, xn, such that
mm{max{AU , } max{ A% Bl-’fr}} = mln{/\u,,uu}—

}} for all 4, j. Then, AB Ap BB is both ECSM

ij
max{mln{AZ] , } min{ A%
and ICSM.

z]?

Proof Consider A® np BE = B B = [cij] = <C]v'>’zj>7 where ézcj =

min{ A%, BY, rand v, = max{\} }. For each e; € E, take

1]7 Zj’ /’[’7,]

bt
a; = min {maX{Aw . By ,max{AU . By }}

B = max {mln{AU , } mln{A” ,Bf}}} .

Then «; is one of AU . B ,A“+ and Bb We consider o = fl‘f or fl‘ﬁ only,

as the remaining cases are similar to thls one. If a; = fla then, Bw < Bb+ <
ACP. < A“ and if §; = BY' then A“ =aq; = max{)\”,,uw} =6 = ij : Thus

ij
Bf < Bf = max{ A} } = A A“ which implies that

7,]7

}—Bb+ (A4 N BY)*.

z] Y /’LU

max{)\l],,u,w

Hence ~ ~ ~ ~

max{X, it} & ((Ag; 0 BY)™, (A4 1 BY)*) and

(A% N BY)~ < max{\;, b} < (A4 N BY)*T.
If aj = A, then BY < Agj < BY and so max{\%, ul;} = Agj = (A, N BT,
Hence ~ ~ ~ ~

max{\g, ut;} ¢ (A% N BY)~, (A% N BY)*) and

(Aa me) max{)\zghuzj} < (AZQBZ)-’_
Consequently, we note that AEE Ar B® is both ECSM and ICSM. [ |
THEOREM 4.18 Let AB BE ¢ ECSMme such that
Inln{max{AZJ , } maX{Aw , }} min{\¢ ,MU} >
Inam{mln{AU , } mln{A” 7Bl’-);}} for all 4, j. Then, A® Ap B® is an ECSM.
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)

}. For each e; € E, take,

Proof Consider A® Ap B¥ = C% = [¢;;] = <C~’CJ,'yfj> , where C’C = mm{A”, }

and ~f; = min{Af}, 1)

aj = mm{max{AU , } max{AU ,le?j*}}
Bj = max {mln{A” , } mln{AZJ ,BZZ?;}} )

+ . 0= ot
Then «; is one of AU , ” ,Aa and Bb Consider a; = A?- or A?j only, for

the remaining cases, it is similar to this case. If o; = Aw , then BEZI-’]T < le?; <
AgT < AT If B = BY, then BY = (A4 N BY)~ < (A}, N BT = BY =8, <
min{\¢ }. Hence

min{Ag, 1t} ¢ (A% 0 BY), (A4 N BY)*Y).
If o = Afj , then Bb < AaJr Eb and so f3; = max{A
that 8; = Afj , then Bb < A“ < mm{/\
inequality, we have

’LJ’/LZ]

B
R Bj; }. Assume

ZJ,MU} < A . From the given

Bf-’j < A? < min{\f ],,um} < A Bf’; or
~ bt
Bibj < A“ < mln{)\”,ﬂw} A Bb .
+
For the case Bl] < Aa < mln{A”,um} < A;f]~ ZJ ,
fact that A® and B® are ECSM. For the case ij_ A;’ < min{\
BYY, we have mm{AU,MU} ¢ ((Agj N BY)~, (A% N BY)*) .
Since mln{AU,Ml]} A (A“ N BY)*T. Assume that 85 = BY .
Then A?j Bf’ < mln{/\m, Mw} fl‘ﬁ B’b+ From the given inequality,
+ Sb+
{1‘17 B < mln{)\w,,uw} < Aa+ < Bll?]+ or
) {lfj Bb < mln{)\w,,uw} Al < Bll-’j .
For the case Af; < ij < mm{)\],,um} < A < ij , it contradicts to the fact
that A® and B¥ are EC'SM,. For the case Afj < Bf < mm{)\lj,uw} = A?; <

ij , we get

it is a contradiction to the

CL+
zghu’z]} - A'Lj =

min{A%, 1t} ¢ (A% 0 BY), (A4 N BY)Y).

Since m1n{)\”,,uw} = A?j — (jlg] N B%)Jr_

Hence, A® Ap B is an ECSM. [ |

The following example shows that for two ECSM,, A® and B® which
satisfy the condition min {maX{Al] , } maX{A” ,Bf;}} > mm()‘w’“zy) =
max {mln{AU , } mm{Al] szb;}} , for all 4, j. Then A® Ap B® may not be an
ECSM.

m_ {([0.3,0.7],0.3) ([0.2,0.6],0.7
Example 4.19 Let A mo 2.0. 6] 0.9; §0.1,0.8],O.1 ] and
0.2,0.6],0.7) ([0.3,0.7],0.3 : "

BE= K 0_4: 07 :0'4§ 2[0 1.0, 5] 0 7;} satisfy the condition.

But
& g [([0.2,0.6],0.3) ([0.2,0.6],0.3)] .
AT Ap BT = MO.Q,O.G],OA; §{0.1,0.5],0.1§] is not an ECSM.
THEOREM 4.20 Let A® BB € ECSM,,xn, such that
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mm{max{AZ] , } maX{Am , }} > max{)\?j,,ui-’j} >
max{mln{AU ) } mln{AlJ ,Bff}} , for all i, j. Then, ABvp BE is an ECSM.

)

}. For each e; € E, take,

Proof Consider A% vp B¥ = C% = [¢;;] = <C~’CJ,'yfj> , where C’C = maX{A”, }

and ~§; = max{Af;, u;

a; = min {max{AZJ , } maX{Aw ,Bf;}}
Bj = max {mln{A” , } mln{AZJ ,Bg’;}} )

i Bij ,Aa+ and Bb . We consider a; = A“ orA“ only. For

the remaining cases, it is similar to thls case. If aj = AZ] , then Bb B’-’T <

ﬁlfj < A“ and so 3; = Bf’;. Thus (Afj U Bf’j) = Af =a; > max{)\],,uw} and
ence

Then «; is one of A

maX{A'L]?MW} ¢ ((ffg] U ij)_7 (*’4%3 U ij)-‘r) .

If aj = flgf then BZI? A?j < BY and so 3 = max{Aw ,Bbf}.
Assume that §; = flf] . Then Bf’ A“ max{)\”,u”} < A BZI-’;.

From the given inequality, we have
Bb_ <AY < max{)\j,ﬂw} < A < BY or
A“ = max{\}, ,u”
For the case Bb_ Aa < max()\w, ,u”) A;‘; < ij , 1t is a contradicts to the fact
that A® and BEE are ECSM For the case B Aa = max (A, Hfj) < Aff < ij,
we have

max(\g, i) ¢ (A% U BE), (4% U B)*).

Since (ANgJ U BNZ’?].)— = ]1‘.1 = max()\”,,uw) Assume that §; = le‘?'
Then flg{ < Bf < max()\w,p”) Aff < . From the given inequality,

Az < B < max()\”, u”) < AT < B o

- ~ - g,

- {1%, < Z —max()\w,,uw)+< VEAES ij :
For the case A?j < ij < max()\%,uij) < Ag‘] < Bb , it contradicts to the fact
that A® and B® are ECSM,. For the case [l;‘ < Bf = max()\w,ul]) < [l;‘; <
Bf] , we get
max(\, i) ¢ (A% U BY), (4% UBY)*Y).

Since (A% U BY)™ = BY = max (A, u)).
Hence the A® vp B® is an ECSM. [ |
THEOREM 4.21 Let A® BB ¢ CSM,,xn, such that
mln{maX{Am , } max{Am ,Bbf}} > mln()\zj,ul]
max{mm{AU , } mm{Aw , }} , for i, j. Then, A® Vg B® is an ECSM.

) =

Proof Consider A® vz B = C® = [¢;;] = <C~'CJ,%CJ> , where C’C = max{AU, }

1,

and vf; = min{A{ }. For each e; € E take,

Z]?/’LZ]

aj = Imn{mf:u({AZJ , } maX{Aw ’le');}}
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Bj = max {mln{A” , } mln{AU ,BZI.’;}} .

Then «; is one of A Aa’+ and Bb We consider aj = Bff’]f ongfj only, for the

ij Z] ’
J L -
remaining cases, it is similar to this case. If a; = BY . then A?j < A% < Bll-’j <

ij
Bf’j and so 3 = A?j . Thus by given inequality,

(A;z UB%T - Bf’ =a; > mln{)\],#z]}

and hence mln{)\w,ul]} ¢ ((A% U Bz’ )7, (A4 U Bb 7).

If o = BU , the~n _A% ~< BbJr fla and so BJ = maf{AU , f;}. Assume that
B = A” , then B < AY g mln{)\w,um} < B < Aj .
From the given 1nequahty, we have

Bb <AL <min{Xy, pub} < BY < AL o

A“ = mln{)\”,,uw} Bb+ < A;’j.
For the case Bll-’jf < Af < mln{)\ o uw} < Bw < A‘ZJ , it is a contradicts to the fact

that A® and B® are ECSM. For the case ij Af = mln{)\w,,u”} < Bg’+ < A

17
we have
min{Xg, i} ¢ (4% UBY)~, (45 UBY)*).

Since (ANZ] U BNIJ) = A}, = mln{/\zj,,u”} Assume that 3; = B . Then Af{ <
Bg’_ < mm{)\w,,uw} < BbJr Afj . From the given inequality, we have fl“_ <
Blb < mln{)\],uw} < B fl‘ﬁ or fla{ < ijﬁ = mln{)\],,ulj} < BZJ < A‘ﬁ.
For the case Af] < Bgf; < mm{)\m,u”} < BZI-’; < Afj , it contradicts to the fact
23] H Aa~ pbt
that A® and B™ are ECSMs. For the case A;’j < Blb = mln{)\”,uw} < Bf’j <
Af] , we get
mm{)‘z]’“zy} ¢ ((Afj U Bg’j)_, (Ag; U B%)Jr) )

Since([lgj N Bg’j)’ = B;’ = mln{)\m,,ul]}

Hence the A® vy B is an ECSM. [ ]

The following example shows that for two ECSM,, A® and B® which sat-
isfy the condition min {max{Aw ) } max{AlJ ,Bff}} = min{A, MU} >
max {mm{AU ) } mln{AU , }} . for all i, j. Then A® vz B¥ may not be an
ECSM.

B_ 0.3,0.6],0.6) ([0.1,0.8],0.9

Ezample /.22 Let A®= mo 10 5]70 5; §{0.3,0.6],O.6 ] and
BB [§ 8;): 8; 8 S; 2[8 g 8?]: 8;;} satisfy the above condition.
But

o pm [(]0.3,0.7],0.6) ([0.2,0.8],0.7
ATVR BT = [§[0.4,0.8],0.5§ 2[0.3,0%, 0. Gi] is not an ECSM.

THEOREM 4.23 Let AEﬂ BB e CSMan, such that
mln{max{A } maX{Aw , }} > max{A

max{mln{A } mln{Al] 7Bl’-’;}} for all 4, j. Then, A® Ar B® is an ECSM.

1] 7,]7/1’7,]}>

7,]’

Volume-3 | Issue-4 | April,2017 | Paper-1 16



International Journal For Research In Mathematics And Statistics ISSN: 208-2662

Proof Consider A® Ap BE = C® = [¢;;] = <C],fy”> , where C’C = min{ A%, B, )

K
and 7j; = max{)\”,,um} For each e; € E, take

aj = mln{maX{A” , } max{Aw 737’;’;}}
f; = max {mln{AU , } mln{Aw ,Bff}} .

Then «; is one of Af] . By ,A“+ and Bb We consider a; = A orAa only, for the

remaining cases, it is similar to this case. If o; = BU , then A A;‘; < ij <
+

Bl andso 8; = A% Thus A% = (A4NBY)~ < (A4NBY)T = ,6’] < max{ X%, ub;}

and hence

max{/\zj’ sz} ¢ ((Ag N B,f’-)_7 (Ag N Bf)—i_) :
If a; = BY then A% < BY <
Assume that §; = flf] . Then Biﬁ A“ < max{A
From the given inequality, we have
Ly, we
‘?’?‘] < f}a < maX{Azja /'sz} < B
i AL < max{)\w,,uw} BbJr
For the case ij_ < [1?] < max{)\w,,u”} < Bw A;‘] , it is a contradiction to
the fact that A® and B® are ECSM. For the case Bw < A;-l] < max{)\zj,um} =

RbT < Aa
B;; AU , we have

Aa and so 3 = max{Aw ,Bb+}

b* Yot
Z],,um}\B < AY .

max{)\ma Mz]} ¢ ((Agj N B,f)])_, (A?j N sz])—‘r) :

Since max{/\m,uw} = A“Jr (A“ N B%)*. Assume that §; = B’ij’, Then fl;‘j <
Bll? < max{/\”,u”} ij < A“ From the given inequality, we have
A% < Bf < max{A{;, ,u”} < Bf < AaJr
flf_ Bb < max{)\w, uw} = Bb+ < Af‘;r.

For the case fl‘f Bb < max{)\ } < Bb+ Aa it contradicts to the fact

1/]’/“%] 1]

that A® and BEﬂ are ECSMS For the case Afj < Bb < max{)\”,um} = BZI-’; <
Afj , we get max{)\”,,u”} ¢ ((/}fj N ?f-’j) ,(A;‘J N szj) )

Since max{)\”,,um} Af]+ = (44N B%)J“.

Hence the A® Ap B® is an ECSM. [ |

The following example shows that for two FCSM,, A® and B® which sat-
BY ) max{Ag By} > max{Ag,uh} =
}} , for all i, j. Then A® Az B¥ may not be an

isfy the condition min {max{A

} min{ A%

ij
max{mln{A
BOSM. 0.7,0.9],0.7) ([0.4,0.7

H_ ’ Sk
Ezample 4.24 Let A7= MO.B,O.6] 0. 3§ é{o 6.0.7

, 0.

, ,0.
BE= [é 83’ 82 8 lei <EO[O5é0i]8]’ 07§>} satisfy the above condition.
But

7,]7 ’L]’

2
5

] and

@ @ [(0.6,0.8],0.7) ([0.4,0.7],0.5
AT AR BT = [2{0.2,0.4],0.3§ §{0.6,0.7J, 0. 75] is not an ECSM.
THEOREM 4.25 Let A® BB € ECSM,,xn, such that
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min()\?j,u?j) € lmln {maX{A” , } maX{A” , }} max {mln{A” , } mln{A” ,B;’;}})
for all i, j. Then AB Ap BE € ECSM,, .
Proof Consider A® Ap BF = C® = [¢;] = <C~'c],’yfj> , where C’C — min{ A% Bb}

g 50

and 5 = mm{)\ij,,uij}. For each e; € E, take
aj = mm{max{AU , Bl Y, max{AU 7le‘)j+}}
/6’] = max {mm{AU , } mln{AU ,le?j*}} )

+ . Ta— Tat
Then «; is one Aa- Aa and Bb . Now consider,o;; = Af; or Af; only, as

Z_]’ Z_]’

the remaining cases are sumlar to this one. If a;; = Afj , then ng < BZZ»’; < fl?jf <

fl’ﬁ and so B; = BY, thus Bgf?; = ([lfj N ij)_ (Af] N AZ)JF = ij = B <

ij
mln{)\ }. Hence

min{\Z, it} ¢ ((Agj N BY). (g N BY)*).
If o = AZJ , then Blf fl‘“ " and so B = maX{A
B = AZ , then Bb] < A“ < mm{)‘w’“z]} Aff < Z-j - So from this,
A“ < mln{)\”,,uw} < A“Jr < Bl’.’;or

I, bt

i Bf’] < Aa < mln{)\w,,uw} = A“ < l?fj .
For the case, Bll-’jf A;’“J < mln{)\w,,uw} < A < Bf;, it is contradiction
to the fact that, AEE and B® are ECSM,,y,. For the case Bll-’jf < flg{ <
mm{Aw,M”} = Aq+ BY" | we have mln{)\w,,uw} ¢ ((flf] N B%)_, (/Nl% N ij)+>

ZJ’MZ]

o Zl?j*}. Assume that

ij
because min{A{;, uw} = A“+ (Af] N B,f’j) .
Again assume that 3; = B then flg{ < Bll?j < mm{)\m,,uw} < Aa+ Bb+.
From this,

7,]7

/1%7 < Bf < min{\¢ } < A B~bj+. or
o < Bb- _ ar 208
- /}fj <Bj; < mln{)\w,,uw}+ Af By,
For the case A}, < Bf-’j < mm{/\w,u”} < Al < Bf’j it is contradiction to the
fact that A® and B® are ECSM,,xn. And if we take the case, flg{ < Bf’; <

} = flg”; Bb we get, mln{AU,Mw} ¢ ((flf] HB%)_, (Afj N B%)Jr)

15> '“U S
<

mm{/\w, sz

because, mm{)‘w’“w} Aa+ = (A“ ﬂBb) .
Hence in all the cases, A® /\p B® ¢ ECSM,, . [ |

The following example shows that for two ECSMs, A® and B which satisfy
the condition.

min()\?j,,u?j) ¢ lmln {maX{A” , } maX{A” , }} max {mln{A” , } mln{A” ,Bﬁ’;}})
for all i, j. Then A® Ap B® may not be an ECSM.

0.2,0.3],0.2) (0.4,0.7],
0.5,0.9],0.5 0 1,0.5],

o ]

Ezample 4.26 Let AB= [é[

and BE= [
Then

o s _ [([0.1,0.3],0.2) ([0.4,0.6],0.2)] .
A% Ap B MO 10 9], 0.5; §{0.1,0.5],0.5§] is not an ECSM.
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THEOREM 4.27 Let A®, B® ¢ ECSM,,xn, such that
max{)\?j,uli’j} € (mm {maX{AU , } maa:{A” , }} Inax{mln{A” , } mm{Aw ,ij}}

for all i, j. Then ABvp BE € ECSM,, .

Proof Consider A® vp BE = C® = [¢;;] = <Cj,’ylj> , where C’c = maX{Afj, B i

and 7f; = max{)\z],u”} For each e; € E, take

a; = min {max{AU , } maX{AZ] ,BZ’?;}}
Bj = max {mm{A” , } mln{AZJ ,le?;}} )

+ . Ta- o+
Then «; is one Afj ) ZJ ,A“ and Bb Now consider,o; = Afj or Aj; only, as the

: Ta— ~b— ~ - -+
remaining cases are similar to this one. If a; = A“ , then Bb le?j < Agj < Afj

and so f3; = B’Zl-’;. Thus (flgj U ij)* = flf =a; > max{)\w,um} Hence

max{\¢, u;} ¢ ((A;g U BY)", (AU BT .

If o = AU , then Bb_ fl“+ " and so 3 = maX{AU , fj_}. Assume that
Bj = Ai] , then BZ] g A” < max{)\”,,uw} < Afj < Z] . So from this we get,
Bl < A < max{\, ul;} < A4 < BY or
~ ~ ot Sbt
Bl < A = max{)\ jw“m} <A < By
For the cases, ij < A“ < max{)\”,,u”} < AU < BZ’-’;, it is contradiction to the
fact that, A% and B® are EC'SM,,x,. For the case Bf{ < flf < max{)\w,,u”} <

/ngj ij , we have max{\%;, ul;} ¢ ((/ng] N ij)_, (/le] N flfj) ) because (Afj
A2~ = A% = max{\%, ul}. )
Again assume that 8; = ij , then A% B < max{AZ],,uU} < Agj+ < By,
from this we get, )
Al < Bb < max{)\j,,uw} < A
Aa < B < max{\}, ,uw} = A“+ BbJr
For the case flg szj < maX{AU, M”} < Agj <B U , it is contradiction to the
fact that A® and B® are ECSM,,,,. And if we take the case, A?j < ij <
- - o .
o} < A%< BY we get, max{hg,uti} ¢ (A4 UBY)", (A% U BY)T)
because, (Af] U Bg’j) = Bb = max{)\”,uw}
Hence in all the C&SGS,AE \/p BB € ECSM,, 5. [ ]

< B
<
max{\

The following example shows that for two ECSMs, AT and B® which satisfy
the condition.

min{A{;, pb;} ¢ (mln {maX{A” ) },max{AU ) }} max {mm{A” , },mln{AU ,Bf?;}}]

for all i, j. Then A® Vp B® may not be an ECSM.

Ezample 4.28 Let AB= [é[gg:gg : ; 811 8; 0.9 ] and
_ 1(]0.1,0.3],0.7) ([0.4,0.6],0.3) n
pee [ R e

’[)09?;)] is not an ECSM.
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THEOREM 4.29 Let A® B® €  ECSMyy,, such that min{)y, b} €
& B }} max {mm{AU , },mm{Am ,Bf;}}

Then AB Vg BE € ECSM,,un.

min {max{A }, max{ A%

i

Proof Consider A% vz B = C® = [¢;j] = <C~'Cj,yfj> where C’C = max{ A% Bb}

57
and vf; = mln{)\m,uw} For each e; € E, take

HbT
a; = min {max{AU , } maX{AZ] , By }}
HbT
,6’] = max {mm{A” , } mln{AU . By }}
Then «; is one Afj , By ,A‘l+ and Bb Now consider,a; = Bf»’j_ or Bf; only, as the
remaining cases are similar to this one. If o;; = Blf then fl‘f fl?; < BZI?; < Bib;

and so 3 = flfj Thus ([l‘fj U Bg’j)* = Bll-’ =5 > mln{)\”,u”} Hence

min{A%, 1t} ¢ (A% UBY), (A% UBY)Y).
If a; = BY, then A“ Bb; < A;‘J and so 5] = max{ A%

ij
Bj = A” , then BY.

o fj_}. Assume that
V<AL <min{Xy, pl} < BY < A% Then,

ij < A? < mln{)\m,,u”} < BZ’-’; < Af; or

Bb_ /Nla = mln{)\w,,uzj} Bb+ Afj.
For the cases, ij < Aa < mln{)\w,pu} < B Aa , it is contradiction to the
fact that, A% and B¥ are ECBM,,x,. For the case Bf’] < flf = mm{)\w,,uw} <

Blb; Aa we have mln{)\w’ MU} ¢ ((A?J @] ij)_, (A% U ij) ) because (A%

ij
Bb )_ = A“ = mln{)\w,u”}
Agaln assume that 3; = Bb”
From this we get,

o ~ ~ 4
Zj N then A?J < BZ < mln{Az]Huzj} ~ < A?] :

fl“ < Bb < min{A

Aa < B = mln{)\”,,u,w} < B < A%
For the case A, < B Z o< mln{)\”, ,uzj} < B A?J 1t is contradiction to the fact
that AEE and B® are ECSM,,x,. And if the case, flg{ < ij* = mln{)\w,u”} <

(B ; is %ken then{/{gln/ig\i}] u” ((Afj U Bll-’j)_, (flfj U B%)-F) because,
Hence in all the cases, A% v BEE isan ECSMy,xn. |

+ Tat
zjnu’z]}<Bb <Aa‘ or
<

The following example shows that for two ECSMs,
A® and  B®  which  satisfy the  condition. min{ A%, p?; } ¢

[mm {maX{A” , } InaX{A” , }} max {mln{A” , } mln{A” ,Bf;}})

for all i, j. Then A% Vi B® may not be an ECSM.

a [([0.3,0.7],0.9) {[0.4,0.8],0.9
Evample 4.30 Let A%= M() 1,0.3 ,04; §0.2,0.4 ,0.7] and
g [([0.2,0.4],0.6) ([0.6,0.7],0.5
b= [<[o1 0.9],1) {[0.5,0.9],0.2)| - Then

@ @ [([0.3,0.7],0.6) ([0.6,0.8],0.5
AT VR B = [§[0.1,0.9],0.2§ §[0.5,0.9J,0 2§] is not an ECSM.
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THEOREM 4.31 Let A®, B® ¢ ECSM,,xn, such that
max{\};, ul;} € [mm{max{A” , Bl 1, max{A” , }} max {mln{Aw , Bl 1, mln{Aw ,Bf;}})

for all i, j. Then AB A BE € ECSM,,xn.

)

}. For each e; € E, take

Proof Consider A® Ag B = C® = [¢;] = <OC],’YZC]>, where C«c _ mln{Al], }
and vf; = max{)\”,pm
aj = mm{max{AU , Bl Y, max{AU ,le?j*}}
Bj = max {mm{AU , } mln{AZJ ,BZZ,’J,*}} )

Then «; is one Aa BbT

+ Sbt . Sbh— Sbt
i > Bij ,A% and ij . Now consider,a; = Bb or Bb only, as the

remaining cases are similar to this one. If o; = ij , then Aw < A‘IJr Bbi < BZ’?;
and so f3; = flg;r Thus (AZ N B%)“‘ = fl;ﬁ =p; < max{)\”,,u”} Hence

maX{Az]a Mz]} ¢ ((Agj N B,f)])_, (A?j N B’Z)-‘r) :

If aj = Bb , then Ag] < BbJr fla and so f8; = max{AZ] , %T}, Assume that
Bj = flff] , then B” < A“ < rnax{)\w,,uw} Bb+ Aa So from this we get,
ij < A2” < max{Ay, u} < BY < A2 o
3 Aa < max{A, u?;} —Bb+ Agj.
For the case, Bw < A“ < maX{AU, u”} < Blb+ Af] , it is contradiction to the
} <

fact that, A® and B® are ECSM,,x,,. For the case ij flf < max{A¢

pbt < fat fa A BY )= (A9 A Bb+

B’L] < A . Then max{)‘zﬁuz]} ¢ ((AQB) (AOB) ) because
(Aa me) Bb _maX{Azjvuz]}

Again assume that 3; = Bl] , then A“ < 11-’]-7 < max{\
From this we get,

ij> '“w

ij> ”U

bt 1Tat
Z]’/‘I”L]} < Bij < AZ] :
;1%7 < Bf < max{)\”,,uw} < Bgll-’; < flgj or
< ~ ~ b+ ot
) Af < Bl < max{)\w,u”} <~B§’j < Ay
For the case Af; < BZI-’ < max{)\”, ,uw} < Bw < A?; it is contradiction to the fact
that A® and B® are EC'SM,,x». And if the case, flg{ < Bll-’ < max{)\”,,u,zj} =

BY < g then max{ sy} ¢ (g1 B (i 0 B)* ) because,
(A?j N B,f»’j) = Bgﬁ = max{/\”, MU}
Thus, AHB AR B® is an ECSM,,, .. [ ]

The following example shows that for two ECSM,, A® and B which satisfy
the condition.

max{)\”,ﬂm} ¢ (mln {maX{A” , } maX{AU , }} max {mln{AU , } mln{AU 735’;}}
for all i, j. Then A® Ar B® may not be an ECSM.
([0.3,0.8], 09 §04,0.6 ,o.gg]

Ezample /.32 Let AB= [

([0.4,0.7],1) ([0.2,0.5],0.6
m_ 0.4,0.6], 0.1,0.8],0.4
and B¥= N0204, §§0 406 J gi].Then

g om [(0.4,08],0.7) ([0.4,0.8],0.4
AT AR BT = [§[0.4,0.7],0.6§ §{0.4,0.6J, 0. 6§] is not an ECSM.
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