ON FREE Γ-SEMIGROUPS

Jollanda Shara
Department of Mathematics\&Computer Science, University "Eqrem Cabej", 6001, Gjirokaster, Albania.
Email: jokrisha@yahoo.com

Abstract

In this paper we give a construction of free Γ-semigroups using the UMP. We describe some of their properties and finally, we give some results about their presentations.

Keywords: free Γ-semigroup, UMP, Γ-group, presentation.

1 Introduction

As P.A.Grillet has pointed out..."Describing semigroups is a formidable task. Semigroups are among the most numerous objects in mathematics, and also among the most complex..." A semigroup is an algebraic structure consisting of a non empty set S together with an associative binary relation. Their formal study began in the early $20^{\text {th }}$ century. Semigroups importance appears in many mathematical disciplines such as coding and language theory, automata theory, combinatorics and mathematical analysis. Γ-semigroups, as a generalization of semigroups are defined by Sen and Saha in 1986. They have attracted many other mathematicians, who have generalized a lot of classical results from the theory of semigroups. Let us mention here Chattopadhyay, Chinram,Tinpun,Sattayaporn etc.

2 Preliminaries

Let S and Γ be two nonempty sets. S is called a Γ-semigroup ([2]) if there exists a mapping • $: S \times \Gamma \times S \rightarrow S$ written as $(x, \gamma, y) \mapsto x \gamma y$ satisfying $(x, \gamma, y) \beta z=x \gamma(y \beta z)$ for all $x, y, z \in S$ and $\gamma, \beta \in \Gamma$. In this case by (S, Γ, \cdot) we mean S is a Γ - semigroup. For a Γ semigroup S and a fixed element $\gamma \in \Gamma$ we define on S the binary operation oby putting $x \circ$ $y=x \gamma y$ for all $x, y \in S$. The pair (S, \circ) such defined is denoted by S_{γ}. It is a semigroup. Moreover, if it is a group for some $\gamma \in \Gamma$ then it is a group for every $\gamma \in \Gamma$. In this case we say that S is a Γ-group.

We denote by $\boldsymbol{\Gamma}-\boldsymbol{S} \boldsymbol{g r} \boldsymbol{p}$ the category of Γ-semigroups which has the Γ-semigroups as objects and the homomorphisms of Γ-semigroups as arrows.

Let S be a Γ-semigroup. A nonempty subset T of S is said to be a Γ-subsemigroup of S if $a \gamma b \in T$, for all $a, b \in T$ and $\gamma \in \Gamma$. We denote this by $T \leq S$.

Let S be a Γ-semigroup and $X \subseteq S, X \neq \emptyset$. We denote by $<X>_{S}=\cap\{A \mid X \subseteq A, A \leq S\}$. Then, as can be easily verified $\langle X\rangle_{S}$ is a Γ-subsemigroup and it is called the Γ subsemigroup generated by X.

Theorem 2.1. Let $X \neq \emptyset, X \subseteq S$ for a Γ-semigroup S. Then

$$
<X>_{S}=\bigcup_{n=1}^{\infty} X^{n}=\left\{x_{1} \alpha_{1} x_{2} \ldots x_{n-1} \alpha_{n-1} x_{n} \mid n \geq 1, x_{i} \in X, \alpha_{i} \in \Gamma\right\}
$$

Proof: Write $A=\bigcup_{n=1}^{\infty} X^{n}$.It is easy to see that $A \leq S$. Also, $X^{n} \subseteq<X>_{s}$ for all $n \geq 1$, since $<X>_{S} \leq S$ and hence the claim follows.

Lemma 2.2. Let $\alpha: S \rightarrow P$ be a homomorphism of Γ-semigroups. If $X \subseteq S$ then
$\alpha\left(<X>_{S}\right)=<\alpha(X)>_{P}$.
Proof: If $x \in<X>_{S}$ then by Theorem 2.1. $x=x_{1} \alpha_{1} x_{2} \ldots x_{n-1} \alpha_{n-1} x_{n}$ for some $x_{i} \in X, \alpha_{i} \in$ Γ.Since α is a homomorphism we have

$$
\alpha(x)=\alpha\left(x_{1}\right) \alpha_{1} \alpha\left(x _ { 2) } \ldots \alpha \left(x_{n-1)} \alpha_{n-1} \alpha\left(x_{n}\right) \in<\alpha(X)>_{P}\right.\right.
$$

And so $\alpha\left(<X>_{S}\right) \subseteq<\alpha(X)>_{P}$. On the other hand if $\left.y \in\right) \subseteq<\alpha(X)>_{P}$ then again by Theorem 2.1. $y=\alpha\left(x_{1}\right) \alpha_{1} \alpha\left(x_{2}\right) \ldots \alpha\left(x_{n-1}\right) \alpha_{n-1} \alpha\left(x_{n}\right)$ for some $\alpha\left(x_{i}\right) \in \alpha(X)\left(x_{i} \in X\right)$. The claim follows now since α is a homomorphism: $y=\alpha\left(x_{1} \alpha_{1} x_{2} \ldots x_{n-1} \alpha_{n-1} x_{n}\right)$ where $x_{1} \alpha_{1} x_{2} \ldots x_{n-1} \alpha_{n-1} x_{n} \in<X>_{s}$.

Lemma 2.3. If $\alpha: S \rightarrow P$ is an isomorphism of Γ-semigroups then also $\alpha^{-1}: P \rightarrow S$ is an isomorphism of Γ-semigroups.

Proof: First of all, α^{-1} exists,because α is a bijection. Furthermore, $\alpha \alpha^{-1}=\iota$, and thus, because α is a homomorphism we have

$$
\alpha\left(\alpha^{-1}(x) \gamma \alpha^{-1}(y)\right)=\alpha\left(\alpha^{-1}(x)\right) \gamma \alpha\left(\alpha^{-1}(y)\right)=x \gamma y
$$

And so $\alpha^{-1}(x) \gamma \alpha^{-1}(y)=\alpha^{-1}(x \gamma y)$, as desired.

Definition 2.4. An element a of a Γ-semigroup S is said to be cancellative provided it is both left and right α-cancellative.

Definition 2.5. An element a of a Γ-semigroup S is said to be left- Γ-cancellative provided a is left- α-cancellative for all $\alpha \in \Gamma$.

Definition 2.6. An element a of a Γ-semigroup S is said to be right- Γ-cancellative provided a is right- α-cancellative for all $\alpha \in \Gamma$.

Definition 2.7. An element a of a Γ-semigroup S is said to be Γ-cancellative provided it is both left and right Γ-cancellative.

Definition 2.8. A Γ-semigroup S is said to be cancellative provided every $a \in S$ is Γ cancellative.

Definition 2.9.([3]). Given a Γ-semigroup S we define its universal semigroup Σ as the quotient of the free semigroup F on the set $S \cup \Gamma$ by the congruence generated from the relations $\left(\gamma_{1}, \gamma_{2}\right) \sim \gamma_{1},(x, \gamma, y) \sim x \gamma y,(x, y) \sim x \gamma_{0} y$
for all $\left(\gamma_{1}, \gamma_{2}, \gamma \in \Gamma\right.$,all $x, y \in S$ and with $\gamma_{0} \in \Gamma$ fixed element.

Lemma 2.10.([3],Lemma 1.1) Every element of Σ can be represented by an irreducible word which has the form $\gamma x \gamma^{\prime}, \gamma x, x \gamma, \gamma$ or x where $x \in S$ and $\gamma, \gamma^{\prime} \in \Gamma$.

Two sets X and Y have the same cardinality, and this is denoted $|X|=|Y|$, if there exists a bijection, that is, an injective and surjective function, from X to $Y, \varphi: X \rightarrow Y$. In this case the function $\varphi^{-1}: Y \rightarrow X$ is a bijection, too. So, there is a 1-to-1 correspondence between the elements of X and Y and if X is finite, then $|X|=|Y|$ if and only if X and Y have the exactly the same number of elements,

Let A be a set of symbols, called an alphabet. Its elements are letters and any finite sequence of letters is a word over A. We denote by A^{*} the set of all words over A. It is a semigroup when the product is defined as the concatenation of words. It is a free semigroup over A, as well.

Proposition 2.11.([7],Theorem 3.4.) A semigroup S is free if and only if $S \cong A^{*}$, for some alphabet A.

Corollary 2.12. If S is freely generated by a set X, then $S \cong A^{*}$ where $|A|=|X|$.

Corollary 2.13. If S and R are free semigroups generated by X and Y respectively such that $|X|=|Y|$ then $S \cong R$.

3 Equivalences

As we know, a relation ρ on a set X is: reflexive if and only if $1_{X} \subseteq \rho$, antisymmetric if and only if $\rho \cap \rho^{-1}=1_{X}$, and transitive if and only if $\rho \circ \rho \subseteq \rho$. We define an equivalence ρ on a set X as a relation that is reflexive, transitive and symmetric i.e. such that
$(\forall x, y \in X)(x, y) \in \rho \Rightarrow(y, x) \in \rho$.
We can express this property as $\rho \subseteq \rho^{-1}$. If we denote by \mathcal{B}_{X} the set of all binary relations on X and define on \mathcal{B}_{X} an operation \circ by the rule that, for all $\rho, \sigma \in \mathcal{B}_{X}$,
$\rho \circ \sigma=\{(x, y) \in X \times X \mid(\exists z \in X)(x, z) \in \rho$ and $(z, y) \in \sigma\}$
then it is easily verified that for all $\rho, \sigma, \tau, \rho_{1}, \rho_{2}, \ldots, \rho_{n} \in \mathcal{B}_{X}$ the following relations hold:
$\rho \subseteq \sigma \Longrightarrow \rho \circ \tau \subseteq \sigma \circ \tau, \tau \circ \rho \subseteq \tau \circ \sigma$
$(\rho \circ \sigma) \circ \tau=\rho \circ(\sigma \circ \tau)$

$$
\begin{equation*}
\left(\rho^{-1}\right)^{-1}=\rho \tag{3.3}
\end{equation*}
$$

$\left(\rho_{1} \circ \rho_{2} \circ \ldots \circ \rho_{n}\right)^{-1}=\rho_{1}^{-1} \circ \ldots \circ \rho_{n}^{-1}$
$\rho \subseteq \sigma \Rightarrow \rho^{-1} \subseteq \sigma^{-1}$
Here by ρ^{-1} we denote the converse of ρ for each $\rho \in \mathcal{B}_{X}$, i.e
$\rho^{-1}=\{(x, y) \in X \times X \mid(y, x) \in \rho\}$.
If ρ is an equivalence on X then the set of ρ-classes, whose elements are the subsets $x \rho$, is called the quotient set of X by ρ and is denoted by X / ρ. The map $\rho^{\text {b }}: X \rightarrow X / \rho$ defined by

$$
\begin{equation*}
x \rho^{\mathfrak{b}}=x \rho, x \in X \tag{3.8}
\end{equation*}
$$

is called the natural map.
Proposition 3.1.([1],Prop.1.4.7) If $\varphi: X \rightarrow X$ is a map, then $\varphi \circ \varphi^{-1}$ is an equivalence.
We call this equivalence the kernel of φ and write $\varphi \circ \varphi^{-1}=\operatorname{ker} \varphi$.

Let R be a relation on X. We denote by R^{e} the minimum equivalence on X containing R. The family of equivalences containing R is non-empty since $X \times X$ is one such. Then the intersection of all equivalences containing R is an equivalence and it is just the equivalence generated by R that is R^{e}. Its properties are given by J.M.Howie ([1]).

4 Congruences on Γ-semigroups

In this section we give some known results about congruences on Γ-semigroups.
Definition 4.1.([4]) An equivalence relation ρ on S is called congruence if $x \rho y$ implies that $(x \gamma z) \rho(y \gamma z)$ and $(z \gamma x) \rho(z \gamma y)$ for all $x, y, z \in S$ and $\gamma \in \Gamma$, where by $x \rho y$ we mean $(x, y) \in$ ρ.

Let ρ be a congruence relation on (S, Γ). By S / ρ we mean the set of all equivalence classes of the elements of S with respect to ρ that is $S / \rho=\{\rho(x) / x \in S\}$.
Theorem 4.2.([5]) Let ρ be a congruence relation on (S, Γ). Then S / ρ is a Γ - semigroup.
Proof: Let S be a Γ - semigroup and ρ a congruence on S. For $a \rho, b \rho \in S / \rho$ and $\gamma \in \Gamma$, let $(a \rho) \gamma(b \rho)=(a \gamma b) \rho$. This is well-defined because for $a, a^{\prime}, b, b^{\prime} \in S$ and $\gamma \in \Gamma$ we have:
$a \rho=a^{\prime} \rho \quad$ and $\quad b \rho=b^{\prime} \rho \quad \Rightarrow\left(a, a^{\prime}\right),\left(b, b^{\prime}\right) \in \rho \Rightarrow\left(a \gamma b, a^{\prime} \gamma b\right),\left(a^{\prime} \gamma b, a^{\prime} \gamma b^{\prime}\right) \in \rho \Rightarrow$ $\left(a \gamma b, a^{\prime} \gamma b^{\prime}\right) \in \rho \Rightarrow(a \gamma b) \rho=\left(a^{\prime} \gamma b^{\prime}\right) \rho$.
Now, let $a, b, c \in S$ and $\gamma, \mu \in \Gamma$. Then we have
$(a \rho \gamma b \rho) \mu c \rho=((a \gamma b) \rho) \mu c \rho=(a \gamma(b \mu c)) \rho=a \rho \gamma(b \mu c) \rho=a \rho \gamma(b \rho \mu c \rho)$.
This proves the theorem.
Theorem 4.3. ([6]) Let $(\varphi, g):\left(S_{1}, \Gamma_{1}\right) \rightarrow\left(S_{2}, \Gamma_{2}\right)$ be a homomorphism. Define the relation $\rho_{(\varphi, g)}$ on $\left(S_{1}, \Gamma_{1}\right)$ as follows:
$x \rho_{(\varphi, g)} y \Leftrightarrow \varphi(x)=\varphi(y)$. Then $\rho_{(\varphi, g)}$ is a congruence on $\left(S_{1}, \Gamma_{1}\right)$.
Proof: Clearly, $\rho_{(\varphi, g)}$ is an equivalence relation. Suppose that $x \rho_{(\varphi, g)} y$. We have $\varphi(x)=$ $\varphi(y) \Rightarrow \varphi(x) g(\gamma) \varphi(z)=\varphi(y) g(\gamma) \varphi(z) \Rightarrow \varphi(x \gamma z)=\varphi(y \gamma z)$ for all $z \in S_{1}$ and $\gamma \in \Gamma_{1}$. Thus, $(x \gamma z) \rho_{(\varphi, g)}(y \gamma z)$. In a similar way,we show that $(z \gamma x) \rho_{(\varphi, g)}(z \gamma y)$. Therefore, $\rho_{(\varphi, g)}$ is a congruence relation on $\left(S_{1}, \Gamma_{1}\right)$.

Theorem 4.4. ([5],Theorem 2.1.) Let S and T be Γ-semigroups under same Γ and $\phi: S \rightarrow T$ be a Γ-homomorphism. Then there is a a Γ-homomorphism $\varphi: S / \operatorname{ker} \phi \rightarrow T$ such that $\operatorname{im} \phi=$ $\operatorname{im} \varphi$ and the diagram

$$
\begin{array}{r}
S \xrightarrow{\phi} T \\
(\operatorname{ker} \phi)^{\mathfrak{b}} \downarrow \nearrow \varphi \\
S / \operatorname{ker} \phi
\end{array}
$$

commutes (i.e. $\varphi \circ(\operatorname{ker} \phi)^{\mathfrak{b}}=\phi$) where $(\operatorname{ker} \phi)^{\mathfrak{b}}$ is the natural mapping from S onto S/ker ϕ
defined by $(\operatorname{ker} \phi)^{\mathfrak{b}}(x)=x \operatorname{ker} \phi$ for all $x \in S$.
Corollary 4.4.1. Let Let S and T be Γ - semigroups under same Γ and $\phi: S \rightarrow T$ be a Γ homomorphism. Then $S / \operatorname{ker} \phi \cong \operatorname{im\phi }$.

Theorem 4.5.([6] Isomorphism theorem): If $\varphi: S_{1} \rightarrow S_{2}$ is a homomorphism of Γ-semigroups with the same Γ then there exists a unique isomorphism $\psi: S_{1} / \rho \rightarrow S_{2}$ such that the following diagram commutes:

$$
\begin{array}{r}
S_{1} \xrightarrow{\varphi} S_{2} \\
\Pi_{S_{1}} \downarrow \nearrow \psi \\
S_{1} / \rho_{\varphi}
\end{array}
$$

where $\Pi_{S_{1}}: S_{1} \rightarrow S_{1} / \rho_{\varphi}$ is defined by $\Pi_{S_{1}}(x)=\rho_{\varphi}(x)$ for all $x \in S_{1}$.

Let ρ and σ be congruences on a Γ-semigroup S with $\rho \subseteq \sigma$. Define the relation σ / ρ on S / ρ by

$$
\sigma / \rho=\{(x \rho, y \rho) \in S / \rho \times S / \rho \mid(x, y) \in \sigma\}
$$

To show that σ / ρ is well-defined, let $x \rho, a \rho, y \rho, b \rho \in S / \rho$ such that $x \rho=a \rho$ and $y \rho=$ $b \rho$.Thus $(x, a),(y, b) \in \rho$. Since $\rho \subseteq \sigma,(x, a),(y, b) \in \sigma$. It follows that $(x, y) \in \sigma \Leftrightarrow$ $(a, b) \in \sigma$.

Theorem 4.6.([5]) Let ρ and σ be congruences on a Γ-semigroup S with $\rho \subseteq \sigma$ and $\sigma / \rho=\{(x \rho, y \rho) \in S / \rho \times S / \rho \mid(x, y) \in \sigma\}$.

Then (i) σ / ρ is a congruence on S / ρ and $(i i)(S / \rho) /(\sigma / \rho) \cong S / \sigma$.

5 Construction of Free Γ-semigroups

Let X and Γ be two nonempty sets. A sequence of elements $x_{1} \alpha_{1} x_{2} \alpha_{2} \ldots x_{n-1} \alpha_{n-1} x_{n}$ where $x_{1}, x_{2}, \ldots, x_{n} \in X$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1} \in \Gamma$ is called a word over the alphabet X relative to Γ.The set S of all words with the operation defined from $S \times \Gamma \times S$ to S as $\left(x_{1} \alpha_{1} x_{2} \alpha_{2} \ldots x_{n-1} \alpha_{n-1} x_{n}\right) \gamma\left(y_{1} \beta_{1} y_{2} \beta_{2} \ldots y_{m-1} \beta_{m-1} y_{m}\right)=$ $x_{1} \alpha_{1} x_{2} \alpha_{2} \ldots x_{n-1} \alpha_{n-1} x_{n} \gamma y_{1} \beta_{1} y_{2} \beta_{2} \ldots y_{m-1} \beta_{m-1} y_{m}$
is a Γ-semigroup. This Γ-semigroup is called free Γ-semigroup over the alphabet X relative to Γ and we denote it by $X^{*} \Gamma$. For clarity, we shall often write $u \equiv v$, if the words u and v are the same (letter by letter). The empty word is the word which has no letters. Hence,

$$
X^{*} \Gamma=\left\{x_{1} \alpha_{1} x_{2} \alpha_{2} \ldots x_{n-1} \alpha_{n-1} x_{n} \mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1} \in \Gamma, x_{1}, x_{2}, \ldots, x_{n} \in X\right\}
$$

Closely related to the forgetful functor $\mathcal{U}: \boldsymbol{\Gamma} \boldsymbol{-} \boldsymbol{S g r p} \rightarrow \boldsymbol{\operatorname { S e t }}$ such that $(S, \Gamma, \cdot) \mapsto S$ is the functor F : Set $\rightarrow \boldsymbol{\Gamma}-\boldsymbol{S g r p}$ defined as follows: $X \mapsto\left(X^{*} \Gamma, \Gamma, \cdot\right)$.

For a function $f: X \rightarrow Y$ define $F(f):\left(X^{*} \Gamma, \Gamma, \cdot\right) \rightarrow\left(Y^{*} \Gamma, \Gamma, \cdot\right)$ such that

$$
F(f)\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}\right) \gamma_{1} f\left(x_{2}\right) \gamma_{2} \ldots f\left(x_{n-1}\right) \gamma_{n-1} f\left(x_{n}\right)
$$

where $x_{i}=a_{1}^{i} \alpha_{1}^{i} \ldots a_{m-1}^{i} \alpha_{m-1}^{i} a_{m}^{i}, i=1,2, \ldots, n$.
F as so defined is a functor.

Now suppose that $f: X \rightarrow \mathcal{U}(Y, \Gamma, \cdot)$ is any function from a set X to (the underlying set) of a Γ-semigroup Y. Then we can define a Γ-semigroup homomorphism $f^{*}: X^{*} \Gamma \rightarrow Y$ by

$$
f^{*}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}\right) \gamma_{1} f\left(x_{2}\right) \gamma_{2} \ldots f\left(x_{n-1}\right) \gamma_{n-1} f\left(x_{n}\right)
$$

where $x_{i}=a_{1}^{i} \alpha_{1}^{i} \ldots a_{m-1}^{i} \alpha_{m-1}^{i} a_{m}^{i}, i=1,2, \ldots, n$.
Clearly, f^{*} is the unique Γ-semigroup homomorphism extending f, i.e.if $h: X^{*} \Gamma \rightarrow Y$ is a Γ semigroup homomorphism such that $h(x)=f(x)$ for every $x \in X$ then $h=f^{*}$. Indeed,let $t: X \hookrightarrow X^{*} \Gamma$ be the embedding map and f as above. Define f^{*} as above, as well. Then $\iota f^{*}=$ f. Now, let $h: X^{*} \Gamma \rightarrow Y$ be an arbitrary homomorphism with $t h=f$. For any $x_{1}, x_{2}, \ldots, x_{n} \in$ $X^{*} \Gamma$
$h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}\right) \gamma_{1} f\left(x_{2}\right) \gamma_{2} \ldots f\left(x_{n-1}\right) \gamma_{n-1} f\left(x_{n}\right)=f^{*}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which implies that $h=f^{*}$.

This constitutes the socalled Universal Mapping Property for the free Γ-semigroup $X^{*} \Gamma$ generated by X. Another way of stating this result is that we have a function $\operatorname{Set}(X, \mathcal{U}(Y, \Gamma$; $)) \rightarrow \boldsymbol{\Gamma}-\boldsymbol{\operatorname { S g r }} \boldsymbol{p}\left(\left(X^{*} \Gamma, \Gamma, \cdot\right), Y\right)$ which is a bijection. It's in fact an isomorphism and \mathcal{U} and F are a pair of adjoint functors.

Proposition 5.1. Let X be an alphabet and F let be a Γ-semigroup. Then F is a free Γ semigroup on X relative to Γ if and only if $F \cong X^{*} \Gamma$.

Proof: Suppose $F \cong X^{*} \Gamma$. To show that F is a free Γ-semigroup on X, it is sufficient to show that $X^{*} \Gamma$ is a free semigroup on X. Let $t: X \rightarrow X^{*} \Gamma$ be the embedding map. So let S be a Γ semigroup and $\varphi: X \rightarrow S$ be a map. Define $\varphi^{*}: X^{*} \Gamma \rightarrow S$ by

$$
\varphi^{*}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\varphi\left(x_{1}\right) \gamma_{1} \varphi\left(x_{2}\right) \gamma_{2} \ldots \varphi\left(x_{n-1}\right) \gamma_{n-1} \varphi\left(x_{n}\right)
$$

It is easy to see that φ^{*} is a homomorphism and that $\iota \varphi^{*}=\varphi$. We now have to prove that φ^{*} is unique. So let $\psi: X^{*} \Gamma \rightarrow S$ be an arbitrary homomorphism with $\imath \psi=\varphi$. Then for any $x_{1}, \ldots, x_{n} \in X^{*} \Gamma$, we have

$$
\begin{gathered}
\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\psi\left(x_{1}\right) \gamma_{1} \psi\left(x_{2}\right) \gamma_{2} \ldots \psi\left(x_{n-1}\right) \gamma_{n-1} \psi\left(x_{n}\right) \\
=\varphi^{*}\left(x_{1}\right) \gamma_{1} \varphi^{*}\left(x_{2}\right) \gamma_{2} \ldots \varphi^{*}\left(x_{n-1}\right) \gamma_{n-1} \varphi^{*}\left(x_{n}\right) \\
=\varphi^{*}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

These equalities hold because ψ is a homomorphism, $\iota \psi=\varphi=\iota \varphi^{*}$ and φ^{*} is a homomorphism,too. Hence, $\psi=\varphi^{*}$. Thus, φ^{*} is the unique homomorphism from $X^{*} \Gamma$ to S with $\iota \varphi^{*}=\psi$, and so $X^{*} \Gamma$ is free on X.

Let, now, F be a free Γ-semigroup on X relative to Γ. Let $\iota_{1}: X \hookrightarrow X^{*} \Gamma$ and $\iota_{2}: X \hookrightarrow F$ be the embedding maps. Putting $\varphi=\iota_{2}$ and $S=F$ in the definition of freeness for F on X we see that there is a homomorphism $\iota_{2}^{*}: X^{*} \Gamma \rightarrow F$ with $\iota_{1} \iota_{2}^{*}=\iota_{2}$. Similarly, since F is free on X there is a homomorphism $\iota_{1}^{*}: F \rightarrow X^{*} \Gamma$ with $\iota_{2} l_{1}^{*}=\iota_{1}$. Therefore $l_{1}=\iota_{1} l_{2}^{*} l_{1}^{*}$ and $\iota_{2}=\iota_{2} l_{1}^{*} \iota_{2}^{*}$. Hence, by the uniqueness requirement in the definition of freeness, we have $\iota_{2}^{*} \iota_{1}^{*}=i d_{A}$ and $\iota_{1}^{*} \iota_{2}^{*}=i d_{F}$. Thus, ι_{1}^{*} and ι_{2}^{*} are mutually inverse homomorphisms and so $\cong X^{*} \Gamma$.

A family \mathcal{V} of Γ-semigroups is called a variety of Γ-semigroups if it contains Γ subsemigroups, all homomorphic images and all direct products of its elements.

We say that \mathcal{V} is generated by $\mathcal{U} \subseteq \mathcal{V}$ if \mathcal{V} is the smallest variety containing \mathcal{U}. This is equivalent to every member of \mathcal{V} being obtainable from algebras in \mathcal{U} via a sequence of taking homomorphic images, subalgebras and direct products (H, S and P).

Theorem 5.2. A variety \mathcal{V} is generated by $\mathcal{U} \subseteq \mathcal{V}$ if and only if every $A \in \mathcal{V}$ is in $\operatorname{HSP}(\mathcal{U})$ i.e. there exist $\mathcal{U}_{\alpha} \in \mathcal{U}$ and $T \in \mathcal{V}$, which is a subalgebra of $\prod_{\alpha \in \Lambda} \mathcal{U}_{\alpha}$ (where Λ is an indexing set) and an onto morphism $\varphi: T \rightarrow A$.(see [8]).

The following proposition also holds:

Proposition 5.3. Let \mathcal{V} be a variety and let \mathcal{U} consists of the free objects of \mathcal{V}. Then \mathcal{V} is generated by \mathcal{U}. (see [8], Proposition 1.4.4.).

The following theorem is a generalization of Theorem 3.3. in [7]. Its proof is the same as that of Theorem 3.3. in [7], but for the reader's convienence we will give its proof here.

Theorem 5.4. For each Γ-semigroup S there exists an alphabet Y and an epimorphism $\psi: Y^{*} \Gamma \rightarrow S$.

Proof: Let X be any generating set of S; we may even choose as X the set S itself. Let Y be an alphabet such that $|Y|=|X|$. Let $\psi_{0}: Y \rightarrow X$ be a bijection. By definition of the free Γ semigroup, the bijection ψ_{0} has a homomorphic extension $\psi: Y^{*} \Gamma \rightarrow S$. This extension is surjective, since $<\psi(X)>_{S}=\psi\left(<X>_{S}\right)=\psi(S)$, (because X generates S).

Corollary 5.4.1. Every Γ-semigroup is a quotient of a free semigroup.Indeed
$S \cong Y^{*} \Gamma / \operatorname{ker}(\psi)$ for a suitable epimorphism ψ.

Let $X \subseteq S$, where S is a Γ-semigroup. We say that $x=x_{1} \alpha_{1} x_{2} \alpha_{2} \ldots x_{n-1} \alpha_{n-1} x_{n}$ is a factorization of x over X relative to Γ. Usually, this factorization is not unique,but...

Theorem 5.5. A Γ-semigroup S is freely generated by Y if and only if every $x \in S$ has a unique factorization over Y relative to Γ.

Proof: We observe, first, that the claim holds for the word semigroup $X^{*} \Gamma$, for which X is the only minimal generating set. Let X be an alphabet such that $|X|=|Y|$ and let $g_{0}: Y \rightarrow X$ be a bijection. Suppose that Y generates S freely and that there is an $x \in S$,for which

$$
x=x_{1} \alpha_{1} x_{2} \alpha_{2} \ldots x_{n-1} \alpha_{n-1} x_{n}=y_{1} \beta_{1} y_{2} \beta_{2} \ldots y_{m-1} \beta_{m-1} y_{m},\left(x_{i}, y_{j}\right) \in X,\left(\alpha_{i}, \beta_{j}\right) \in \Gamma
$$

For the homomorphic extension g of g_{0} we have

$$
\begin{aligned}
& g(x)=g_{0}\left(x_{1}\right) \alpha_{1} g_{0}\left(x_{2}\right) \alpha_{2} \ldots g_{0}\left(x_{n-1}\right) \alpha_{n-1} g_{0}\left(x_{n}\right) \\
& \quad=g_{0}\left(y_{1}\right) \beta_{1} g_{0}\left(y_{2}\right) \beta_{2} \ldots g_{0}\left(y_{m-1}\right) \beta_{m-1} g_{0}\left(y_{m}\right)
\end{aligned}
$$

in $X^{*} \Gamma$. Since $X^{*} \Gamma$ satisfies the condition of the theorem and $g_{0}\left(x_{i}\right), g_{0}\left(y_{i}\right)$ are letters for each i,we must have $g_{0}\left(x_{i}\right)=g_{0}\left(y_{i}\right)$ for all $i=1,2, \ldots, n$ (and $m=n$). Moreover, g_{0} is injective, and so $x_{i}=y_{i}$. Hence $\alpha_{i}=\beta_{i}$ for all $i=1,2, \ldots, n$. Thus the claim holds for S, also. Suppose, now that S satisfies the uniqueness condition. Denote by $h_{0}=g_{0}^{-1}$ and let $h: X^{*} \Gamma \rightarrow S$ be the homomorphic extension of h_{0}. But, h is surjective, because Y generates S. It is also injective, because if $h(u)=h(v)$ for some words $u \neq v \in X^{*} \Gamma$, then $h(u)$ would have two different factorizations over Y. Hence h is an isomorphism, and the claim is proved.

6 Some properties of free $\boldsymbol{\Gamma}$-semigroups

Proposition 6.1.The universal semigroup Σ of a free Γ-semigroup is not a free semigroup but there is a subset $S=\left\{x_{1} \alpha_{1} x_{2} \alpha_{2} \ldots x_{n-1} \alpha_{n-1} x_{n}: x_{i} \in X, \alpha_{i} \in \Gamma, i=1,2, \ldots, n\right\}$ of Σ such that for the pair (S, \circ) where " \circ " is defined as follows: $w_{1} \circ w_{2}=w_{1} \gamma_{0} w_{2}$ (we shall denote it by $\left.S_{\gamma_{0}}\right)$ is free on Y where $Y=\left\{x_{1} \alpha_{1} x_{2} \alpha_{2} \ldots x_{n-1} \alpha_{n-1} x_{n}: x_{i} \in X, \alpha_{i} \in \Gamma, \alpha_{i} \neq \gamma_{0}, \forall i=\right.$ $1,2, \ldots, n\}$.

Proof: The universal semigroup Σ of a free Γ-semigroup is not a free semigroup because, by Lemma 2.10., it follows that there exist relations between the words such that, for example, $\alpha=\alpha \beta$. From the Proposition 5.1., it follows that to show that $S_{\gamma_{0}}$ is free we have to show that $S_{\gamma_{0}} \cong Y^{*} \Gamma$, where $Y^{*} \Gamma$ is free. Let us show first that $Y^{*} \Gamma$ is free where from the construction $Y \subset X$. We know that $X^{*} \Gamma$ is free on X. That is the UMP is satisfied i.e. the following diagram commutes.

$$
\begin{array}{cc}
X & \hookrightarrow X^{*} \Gamma \\
\varphi & \searrow \downarrow \varphi^{*} \\
T
\end{array}
$$

Now, let we see the corresponding diagram

$$
\begin{gathered}
Y \hookrightarrow Y^{*} \Gamma \\
\left.\left.\varphi\right|_{Y} \searrow \downarrow \varphi^{*}\right|_{Y^{*} \Gamma} \\
T
\end{gathered}
$$

It is obvious that this diagram commutes as well. This means that $Y^{*} \Gamma$ is a free semigroup on Y. But, it is clear that $S_{\gamma_{0}} \cong Y^{*} \Gamma$ (they have the same base). So, by the Proposition 5.1., it follows that $S_{\gamma_{0}}$ is free on Y.

Let us denote with $f^{*}:\left(S_{1} \cup \Gamma\right)^{*} / \rho_{1} \rightarrow\left(S_{2} \cup \Gamma\right)^{*} / \rho_{2}$ such that $f^{*}\left(\rho_{1}(x)\right)=\rho_{2}(f(x))$ where $f: S_{1} \rightarrow S_{2}$ is a homomorphism of Γ-semigroups. We observe that if $x=y \Rightarrow f(x)=f(y)$. Then we will have $\rho_{2}(f(x))=\rho_{2}(f(y))$ which implies that $f^{*}\left(\rho_{1}(x)\right)=f^{*}\left(\rho_{1}(y)\right)$. Therefore, f^{*} is well defined. Next, we prove that f^{*} is a homomorphism. But, by the definition of f^{*} and the fact that f is a homomorphism we will have:
$f^{*}\left(\rho_{1}(x \gamma y)\right)=\rho_{2}(f(x \gamma y))=\rho_{2}(f(x) \gamma f(y))=\rho_{2}(f(x)) \gamma \rho_{2}(f(y))=$ $f^{*}\left(\rho_{1}(x)\right) \gamma f^{*}\left(\rho_{1}(y)\right)$

Thus, f^{*} is a homomorphism.

Now, we construct a functor F between a Γ-semigroup S and its universal semigroup Σ as follows:
$F(S)=\Sigma=(S \cup \Gamma)^{*} / \rho$ and $F(f)=f^{*}$ where f is a homomorphism of Γ-semigroups. Let $\psi: S_{1} \rightarrow S_{2}$ and $\varphi: S_{2} \rightarrow S_{3}$ be homomorphisms of Γ-semigroups. We have $\varphi \circ \psi: S_{1} \rightarrow S_{3}$ and we prove that $(\varphi \circ \psi)^{*}=\varphi^{*} \circ \psi^{*}$. But,

$$
(\varphi \circ \psi)^{*}\left(\rho_{1}(x)\right)=\rho_{3}(\varphi \circ \psi(x))=\rho_{3}(\varphi(\psi(x)))=\varphi^{*}\left(\rho_{2}(\psi(x))\right)=\varphi^{*} \circ \psi^{*}\left(\rho_{1}(x)\right)
$$

Thus, $(\varphi \circ \psi)^{*}=\varphi^{*} \circ \psi^{*}$. Therefore, $F(\varphi \circ \psi)=F(\varphi) \circ F(\psi)$. Let $\quad i d_{S}: S \rightarrow S$ be the identity homomorphism of the Γ-semigroup S.We have $F\left(i d_{S}\right)=i d_{S}^{*}=i d_{(S \cup \Gamma) / \rho}$, because $i d_{S}^{*}$ and $i d_{(S \cup \Gamma)^{*} / \rho}$ are identity homomorphisms of $(S \cup \Gamma)^{*} / \rho$. Therefore, F is a covariant functor.

From the Proposition 6.1., it follows that the results of Howie can be implanted on Γ semigroups through the mechanism of passing from the Γ-semigroup to its universal semigroup associated to Γ. So,we now can formulate and prove these properties of free Γ semigroups.

Proposition 6.2.The free monoid $M X^{*} \Gamma$ is cancellative.

Proof: This follows from the fact that two words in the alphabet X represent the same element of $M X^{*} \Gamma$ if and only if they are identical.

7 Presentations of $\boldsymbol{\Gamma}$-semigroups

Let S be a Γ-semigroup.By Theorems 4.5, 5.4. and its Corollary 5.4.1., it follows that

$$
S \cong Y^{*} \Gamma / \operatorname{ker}(\psi)
$$

(where $\psi: Y^{*} \Gamma \rightarrow S$ is an epimorphism and $Y^{*} \Gamma$ a suitable word Γ-semigroup), since now $\psi\left(Y^{*} \Gamma\right)=S$. We say that ψ is a homomorphic presentation of S. The letters in Y are called generators of S, and if $(u, v) \in \operatorname{ker}(\psi)$, (which means that $\psi(u)=\psi(v)$) then $u=v$ is called a relation (or an equality) in S. Define a presentation of S as $S=<Y \mid R>(Y=$ $\left\{y_{1}, \ldots, y_{n}\right\}$ and $\left.R=\left\{u_{i}=v_{i} \mid i \in I\right\}\right)$ if $\operatorname{ker}(\psi)$ is the smallest congruence of $Y^{*} \Gamma$ that contains the relation $\left\{\left(u_{i}, v_{i}\right) \mid i \in I\right\}$. In particular,
$\psi\left(u_{i}\right)=\psi\left(v_{i}\right)$ for all $u_{i}=v_{i}$ in R.

The set R of relations is supposed to be symmetric, that is, $u=v \Rightarrow v=u$ where $u=v$ is in R. Recall that the words $w \in Y^{*} \Gamma$ are not elements of S but of the word semigroup $Y^{*} \Gamma$, which is mapped onto S. We say that a word $w \in Y^{*} \Gamma$ presents the element $\psi(w)$ of S. The same element can be presented by many different words, but if $\psi(u)=\psi(v)$, then both u and v present the same element of S.

Let $S=<Y \mid R>$ be a presentation. Then, S satisfies a relation $u=v$ (that is, $\psi(u)=\psi(v)$) if and only if there exists a finite sequence $u=u_{1}, u_{2}, \ldots, u_{k+1}=v$ of words such that u_{i+1} is obtained from u_{i} by substituting a factor u_{i} by v_{i} for some $u_{i}=v_{i}$ in R.

So, we say that a word v is directly derivable from the word u, if
$u \equiv w_{1} u^{\prime} w_{2}$ and $v \equiv w_{1} v^{\prime} w_{2}$ for some $u^{\prime}=v^{\prime}$ in R.
(In order to avoid confusion we use the symbol ' \equiv ' for the equality of two words in $Y^{*} \Gamma$). It is clear that if v is derivable from u, then u is derivable from v (R is supposed to be symmetric), and, in the notation of (7.2),
$\psi(u)=\psi\left(w_{1} u^{\prime} w_{2}\right)=\psi\left(w_{1}\right) \psi\left(u^{\prime}\right) \psi\left(w_{2}\right)=\psi\left(w_{1}\right) \psi\left(v^{\prime}\right) \psi\left(w_{2}\right)=\psi\left(w_{1} v^{\prime} w_{2}\right)=\psi(v)$
Thus, $u=v$ is a relation in S.

The word v is derivable from u, if there exists a finite sequence $u \equiv u_{1}, u_{2}, \ldots, u_{k} \equiv v$ such that for all $j=1,2, \ldots, k-1, u_{j+1}$ is directly derivable from u_{j}. If v is derivable from u, then $\psi(u)=\psi(v)$, too, because $\psi(u)=\psi\left(u_{1}\right)=\cdots=\psi\left(u_{k}\right)=\psi(v)$. So, $u=v$ is a relation in S. This can be written as

$$
u \equiv u_{1}=\cdots=u_{k} \equiv v
$$

We denote by R^{c} the smallest congruence containing R.
Theorem 7.1. Let $S=<Y \mid R>$ be a presentation (with R symmetric). Then

$$
R^{c}=\{(u, v) \mid u=v \text { or } v \text { is derivable from } u\}
$$

Hence $u=v$ if and only if v is derivable from u.
Proof: Define the relation ρ by
$u \rho v \Leftrightarrow u=v$ or v is derivable from u.
It can be easily seen that the relation ρ so defined is a congruence of Γ-semigroups. First, it is clear that $\iota_{S} \subseteq \rho$, and so ρ is reflexive. Since R is symmetric, so is ρ. The transitivity of ρ is easily verified. This shows that ρ is an equivalence relation. In the case $u \rho v \Leftrightarrow u=v$ we can easily verify that $(u \gamma z) \rho(v \gamma z)$ and $(z \gamma u) \rho(z \gamma v)$ also hold. So, ρ is a congruence of Γ semigroups in this case. Now, if $w \in Y^{*} \Gamma$ and v is derivable from u, then it is clear that $w v$ is derivable from $w u$ and $v w$ is derivable from $u w$, too. Thus, ρ is a congruence of Γ semigroups. Let σ be any congruence such that $R \subseteq \sigma$. Suppose that v is directly derivable from u. This means that $u \equiv w_{1} u^{\prime} w_{2}$ and $v \equiv w_{1} v^{\prime} w_{2}$ with $u^{\prime}=v^{\prime}$ in R. Since $R \subseteq \sigma$, $\left(u^{\prime}, v^{\prime}\right) \in \sigma$ as well and since σ is a congruence, also $\left(w_{1} u^{\prime} w_{2}, w_{1} v^{\prime} w_{2}\right) \in \sigma$, that is $u \sigma v$. Now, by transitivity of ρ and σ, it follows that $\rho \subseteq \sigma$. Thus, ρ is the smallest congruence that contains R, that is, $\rho=R^{c}$.

Theorem 7.2. Let Y be an alphabet and $R \subseteq Y^{*} \Gamma \times Y^{*} \Gamma$ a symmetric relation. The Γ semigroup $S=Y^{*} \Gamma / R^{c}$, where R^{c} is the smallest congruence containing R, has the presentation

$$
S=<Y \mid u=v \text { for all }(u, v) \in R>
$$

Moreover, all Γ-semigroups having a common presentation are isomorphic.

Proof: It follows immediately from the above.

References:

1. John M.Howie, (2003), Fundamentals of Semigroup Theory, Clarendon Press, Oxford.
2. M.K.Sen and N.K.Saha, (1986), On Γ-semigroup I, Bull.Cal.Math.Soc.78, 181-186.
3. E.Pasku, (2013) The universal semigroup of a Γ-semigroup, https://arxiv.org, 1-7.
4. A.Seth, (1992) $Г$-Group congruences on regular Γ-Semigroups, Int.J.Math. \&Math.Sci 15, 103-106.
5. R.Chinram and K.Tinpun, (2009), Isomorphism Theorems for Γ-Semigroups and ordered \quad-Semigroups, Thai J.Math.,7(2),231-241, www.math.science.cmu.ac.th/thaijournal.
6. H.Hedayati, (2013), Isomorphisms via Congruences on Γ-Semigroups and Γ-Ideals, Thai J.Math.11(3), 563-575, http://thaijmath.in.cmu.ac.th.
7. Tero Harju, (2010), Lecture Notes on Semigroups, Department of Mathematics, University of Turku, Finland.
8. Claire Cornock, (2011), Restriction Semigroups: Structure, Varieties and Presentations, PhD Thesis, University of York.
