ON FREE Γ-SEMIGROUPS

Jollanda Shara

Department of Mathematics & Computer Science, University "Eqrem Cabej", 6001, Gjirokaster, Albania.

Email: jokrisha@yahoo.com

Abstract

In this paper we give a construction of free Γ -semigroups using the UMP. We describe some of their properties and finally, we give some results about their presentations.

Keywords: free *Γ*-semigroup, UMP, *Γ*-group, presentation.

1 Introduction

As P.A.Grillet has pointed out..."Describing semigroups is a formidable task. Semigroups are among the most numerous objects in mathematics, and also among the most complex..." A semigroup is an algebraic structure consisting of a non empty set S together with an associative binary relation. Their formal study began in the early 20^{th} century. Semigroups importance appears in many mathematical disciplines such as coding and language theory, automata theory, combinatorics and mathematical analysis. Γ -semigroups, as a generalization of semigroups are defined by Sen and Saha in 1986. They have attracted many other mathematicians, who have generalized a lot of classical results from the theory of semigroups. Let us mention here Chattopadhyay, Chinram, Tinpun, Sattayaporn etc.

2 Preliminaries

Let S and Γ be two nonempty sets. S is called a Γ -semigroup ([2]) if there exists a mapping S: $S \times \Gamma \times S \to S$ written as $(x, \gamma, y) \mapsto x\gamma y$ satisfying $(x, \gamma, y) \beta z = x\gamma (y\beta z)$ for all $x, y, z \in S$ and $\gamma, \beta \in \Gamma$. In this case by (S, Γ, γ) we mean S is a Γ -semigroup. For a Γ -semigroup S and a fixed element $\gamma \in \Gamma$ we define on S the binary operation S by putting S0 by S1. It is a semigroup. Moreover, if it is a group for some S2 then it is a group for every S3. In this case we say that S3 is a S5-group.

We denote by Γ – Sgrp the category of Γ -semigroups which has the Γ -semigroups as objects and the homomorphisms of Γ -semigroups as arrows.

Let *S* be a Γ -semigroup. A nonempty subset *T* of *S* is said to be a Γ -subsemigroup of *S* if $a\gamma b \in T$, for all $a, b \in T$ and $\gamma \in \Gamma$. We denote this by $T \leq S$.

Let S be a Γ -semigroup and $X \subseteq S, X \neq \emptyset$. We denote by $\langle X \rangle_S = \bigcap \{A | X \subseteq A, A \leq S\}$. Then, as can be easily verified $\langle X \rangle_S$ is a Γ -subsemigroup and it is called the Γ -subsemigroup generated by X.

Theorem 2.1. Let $X \neq \emptyset$, $X \subseteq S$ for a Γ -semigroup S. Then

$$< X >_{S} = \bigcup_{n=1}^{\infty} X^{n} = \{x_{1} \alpha_{1} x_{2} \dots x_{n-1} \alpha_{n-1} x_{n} | n \ge 1, x_{i} \in X, \alpha_{i} \in \Gamma\}$$

Proof: Write $A = \bigcup_{n=1}^{\infty} X^n$. It is easy to see that $A \leq S$. Also, $X^n \subseteq \langle X \rangle_S$ for all $n \geq 1$, since $\langle X \rangle_S \leq S$ and hence the claim follows.

Lemma 2.2. Let $\alpha: S \to P$ be a homomorphism of Γ -semigroups. If $X \subseteq S$ then

$$\alpha(\langle X \rangle_S) = \langle \alpha(X) \rangle_P$$
.

Proof: If $x \in X >_S$ then by Theorem 2.1. $x = x_1 \alpha_1 x_2 \dots x_{n-1} \alpha_{n-1} x_n$ for some $x_i \in X$, $\alpha_i \in \Gamma$. Since α is a homomorphism we have

$$\alpha(x) = \alpha(x_1)\alpha_1\alpha(x_2) \dots \alpha(x_{n-1})\alpha_{n-1}\alpha(x_n) \in <\alpha(X)>_P$$

And so $\alpha(\langle X \rangle_S) \subseteq \langle \alpha(X) \rangle_P$. On the other hand if $y \in) \subseteq \langle \alpha(X) \rangle_P$ then again by Theorem 2.1. $y = \alpha(x_1)\alpha_1\alpha(x_2)...\alpha(x_{n-1})\alpha_{n-1}\alpha(x_n)$ for some $\alpha(x_i) \in \alpha(X)(x_i \in X)$. The claim follows now since α is a homomorphism: $y = \alpha(x_1\alpha_1x_2...x_{n-1}\alpha_{n-1}x_n)$ where $x_1\alpha_1x_2...x_{n-1}\alpha_{n-1}x_n \in \langle X \rangle_S$.

Lemma 2.3. If $\alpha: S \to P$ is an isomorphism of Γ-semigroups then also $\alpha^{-1}: P \to S$ is an isomorphism of Γ-semigroups.

Proof: First of all, α^{-1} exists, because α is a bijection. Furthermore, $\alpha\alpha^{-1} = \iota$, and thus, because α is a homomorphism we have

$$\alpha\big(\alpha^{-1}(x)\gamma\alpha^{-1}(y)\big)=\alpha\big(\alpha^{-1}(x)\big)\gamma\alpha\big(\alpha^{-1}(y)\big)=x\gamma y$$

And so $\alpha^{-1}(x)\gamma\alpha^{-1}(y) = \alpha^{-1}(x\gamma y)$, as desired.

Definition 2.4. An element α of a Γ -semigroup S is said to be cancellative provided it is both left and right α -cancellative.

Definition 2.5. An element a of a Γ -semigroup S is said to be left- Γ -cancellative provided a is left- α -cancellative for all $\alpha \in \Gamma$.

Definition 2.6. An element α of a Γ -semigroup S is said to be right- Γ -cancellative provided α is right- α -cancellative for all $\alpha \in \Gamma$.

Definition 2.7. An element α of a Γ -semigroup S is said to be Γ -cancellative provided it is both left and right Γ -cancellative.

Definition 2.8. A Γ -semigroup S is said to be cancellative provided every $a \in S$ is Γ -cancellative.

Definition 2.9.([3]). Given a Γ -semigroup S we define its universal semigroup Σ as the quotient of the free semigroup F on the set $S \cup \Gamma$ by the congruence generated from the relations $(\gamma_1, \gamma_2) \sim \gamma_1$, $(x, \gamma, y) \sim x\gamma y$, $(x, y) \sim x\gamma y$

for all $(\gamma_1, \gamma_2, \gamma \in \Gamma, \text{all } x, y \in S \text{ and with } \gamma_0 \in \Gamma \text{ fixed element.}$

Lemma 2.10.([3],Lemma 1.1) Every element of Σ can be represented by an irreducible word which has the form $\gamma x \gamma', \gamma x, x \gamma, \gamma$ or x where $x \in S$ and $\gamma, \gamma' \in \Gamma$.

Two sets X and Y have the same cardinality, and this is denoted |X| = |Y|, if there exists a bijection, that is, an injective and surjective function, from X to Y, $\varphi: X \to Y$. In this case the function $\varphi^{-1}: Y \to X$ is a bijection, too. So, there is a 1-to-1 correspondence between the elements of X and Y and if X is finite, then |X| = |Y| if and only if X and Y have the exactly the same number of elements,

Let A be a set of symbols, called an alphabet. Its elements are letters and any finite sequence of letters is a word over A. We denote by A^* the set of all words over A. It is a semigroup when the product is defined as the concatenation of words. It is a free semigroup over A, as well.

Proposition 2.11.([7],Theorem 3.4.) A semigroup S is free if and only if $S \cong A^*$, for some alphabet A.

Corollary 2.12. If S is freely generated by a set X, then $S \cong A^*$ where |A| = |X|.

Corollary 2.13. If *S* and *R* are free semigroups generated by *X* and *Y* respectively such that |X| = |Y| then $S \cong R$.

3 Equivalences

As we know, a relation ρ on a set X is: reflexive if and only if $1_X \subseteq \rho$, antisymmetric if and only if $\rho \cap \rho^{-1} = 1_X$, and transitive if and only if $\rho \circ \rho \subseteq \rho$. We define an equivalence ρ on a set X as a relation that is reflexive, transitive and symmetric i.e. such that

$$(\forall x, y \in X)(x, y) \in \rho \Longrightarrow (y, x) \in \rho.$$

We can express this property as $\rho \subseteq \rho^{-1}$. If we denote by \mathcal{B}_X the set of all binary relations on X and define on \mathcal{B}_X an operation \circ by the rule that, for all ρ , $\sigma \in \mathcal{B}_X$,

$$\rho \circ \sigma = \{(x, y) \in X \times X | (\exists z \in X)(x, z) \in \rho \text{ and } (z, y) \in \sigma\}$$
 (3.1)

then it is easily verified that for all ρ , σ , τ , ρ_1 , ρ_2 , ..., $\rho_n \in \mathcal{B}_X$ the following relations hold:

$$\rho \subseteq \sigma \Longrightarrow \rho \circ \tau \subseteq \sigma \circ \tau, \tau \circ \rho \subseteq \tau \circ \sigma \tag{3.2}$$

$$(\rho \circ \sigma) \circ \tau = \rho \circ (\sigma \circ \tau) \tag{3.3}$$

$$(\rho^{-1})^{-1} = \rho \tag{3.4}$$

$$(\rho_1 \circ \rho_2 \circ \dots \circ \rho_n)^{-1} = \rho_1^{-1} \circ \dots \circ \rho_n^{-1}$$
(3.5)

$$\rho \subseteq \sigma \Longrightarrow \rho^{-1} \subseteq \sigma^{-1} \tag{3.6}$$

Here by ρ^{-1} we denote the converse of ρ for each $\rho \in \mathcal{B}_X$, i.e

$$\rho^{-1} = \{ (x, y) \in X \times X | (y, x) \in \rho \}. \tag{3.7}$$

If ρ is an equivalence on X then the set of ρ -classes, whose elements are the subsets $x\rho$, is called the quotient set of X by ρ and is denoted by X/ρ . The map $\rho^b: X \to X/\rho$ defined by

$$x\rho^{\mathfrak{b}} = x\rho, x \in X \tag{3.8}$$

is called the natural map.

Proposition 3.1.([1],Prop.1.4.7) If $\varphi: X \to X$ is a map, then $\varphi \circ \varphi^{-1}$ is an equivalence.

We call this equivalence the kernel of φ and write $\varphi \circ \varphi^{-1} = ker\varphi$.

Let R be a relation on X. We denote by R^e the minimum equivalence on X containing R. The family of equivalences containing R is non-empty since $X \times X$ is one such. Then the intersection of all equivalences containing R is an equivalence and it is just the equivalence generated by R that is R^e . Its properties are given by J.M.Howie ([1]).

4 Congruences on Γ -semigroups

In this section we give some known results about congruences on Γ -semigroups.

Definition 4.1.([4]) An equivalence relation ρ on S is called congruence if $x\rho y$ implies that $(x\gamma z)\rho(y\gamma z)$ and $(z\gamma x)\rho(z\gamma y)$ for all $x,y,z\in S$ and $\gamma\in \Gamma$, where by $x\rho y$ we mean $(x,y)\in \rho$.

Let ρ be a congruence relation on (S, Γ) . By S/ρ we mean the set of all equivalence classes of the elements of S with respect to ρ that is $S/\rho = {\rho(x)/x \in S}$.

Theorem 4.2.([5]) Let ρ be a congruence relation on (S, Γ) . Then S/ρ is a Γ - semigroup.

Proof: Let S be a Γ - semigroup and ρ a congruence on S. For $a\rho, b\rho \in S/\rho$ and $\gamma \in \Gamma$, let $(a\rho)\gamma(b\rho) = (a\gamma b)\rho$. This is well-defined because for $a, a', b, b' \in S$ and $\gamma \in \Gamma$ we have:

$$a\rho = a'\rho$$
 and $b\rho = b'\rho$ \Rightarrow $(a,a'),(b,b') \in \rho \Rightarrow (a\gamma b,a'\gamma b),(a'\gamma b,a'\gamma b') \in \rho \Rightarrow$ $(a\gamma b,a'\gamma b') \in \rho \Rightarrow (a\gamma b)\rho = (a'\gamma b')\rho$.

Now, let $a, b, c \in S$ and $\gamma, \mu \in \Gamma$. Then we have

$$(a\rho\gamma b\rho)\mu c\rho = ((a\gamma b)\rho)\mu c\rho = (a\gamma(b\mu c))\rho = a\rho\gamma(b\mu c)\rho = a\rho\gamma(b\rho\mu c\rho).$$

This proves the theorem.

Theorem 4.3. ([6]) Let $(\varphi, g): (S_1, \Gamma_1) \to (S_2, \Gamma_2)$ be a homomorphism. Define the relation $\rho_{(\varphi, g)}$ on (S_1, Γ_1) as follows:

$$x\rho_{(\varphi,g)}y \Leftrightarrow \varphi(x) = \varphi(y)$$
. Then $\rho_{(\varphi,g)}$ is a congruence on (S_1, Γ_1) .

Proof: Clearly, $\rho_{(\varphi,g)}$ is an equivalence relation. Suppose that $x\rho_{(\varphi,g)}y$. We have $\varphi(x)=\varphi(y)\Rightarrow\varphi(x)g(\gamma)\varphi(z)=\varphi(y)g(\gamma)\varphi(z)\Rightarrow\varphi(x\gamma z)=\varphi(y\gamma z)$ for all $z\in S_1$ and $\gamma\in \Gamma_1$. Thus, $(x\gamma z)\rho_{(\varphi,g)}(y\gamma z)$. In a similar way,we show that $(z\gamma x)\rho_{(\varphi,g)}(z\gamma y)$. Therefore, $\rho_{(\varphi,g)}$ is a congruence relation on (S_1,Γ_1) .

Theorem 4.4. ([5],Theorem 2.1.) Let S and T be Γ - semigroups under same Γ and $\phi: S \to T$ be a Γ -homomorphism. Then there is a a Γ -homomorphism $\phi: S/ker\phi \to T$ such that $im\phi = im\phi$ and the diagram

$$S \xrightarrow{\phi} T$$
$$(ker\phi)^{b} \downarrow \nearrow \varphi$$
$$S/ker\phi$$

commutes (i.e. $\varphi \circ (ker\phi)^b = \phi$) where $(ker\phi)^b$ is the natural mapping from S onto $S/ker\phi$

defined by $(ker\phi)^b(x) = xker\phi$ for all $x \in S$.

Corollary 4.4.1. Let Let S and T be Γ - semigroups under same Γ and $\phi: S \to T$ be a Γ -homomorphism. Then $S/\ker \phi \cong im\phi$.

Theorem 4.5.([6] Isomorphism theorem): If $\varphi: S_1 \to S_2$ is a homomorphism of Γ -semigroups with the same Γ then there exists a unique isomorphism $\psi: S_1/\rho \to S_2$ such that the following diagram commutes:

$$S_1 \xrightarrow{\varphi} S_2$$

$$\Pi_{S_1} \downarrow \nearrow \psi$$

$$S_1/\rho_{\varphi}$$

where $\Pi_{S_1}: S_1 \to S_1/\rho_{\varphi}$ is defined by $\Pi_{S_1}(x) = \rho_{\varphi}(x)$ for all $x \in S_1$.

Let ρ and σ be congruences on a Γ -semigroup S with $\rho \subseteq \sigma$. Define the relation σ/ρ on S/ρ by

$$\sigma/\rho = \{(x\rho, y\rho) \in S/\rho \times S/\rho | (x, y) \in \sigma\}$$

To show that σ/ρ is well-defined, let $x\rho, a\rho, y\rho, b\rho \in S/\rho$ such that $x\rho = a\rho$ and $y\rho = b\rho$. Thus $(x, a), (y, b) \in \rho$. Since $\rho \subseteq \sigma$, $(x, a), (y, b) \in \sigma$. It follows that $(x, y) \in \sigma \Leftrightarrow (a, b) \in \sigma$.

Theorem 4.6.([5]) Let ρ and σ be congruences on a Γ -semigroup S with $\rho \subseteq \sigma$ and $\sigma/\rho = \{(x\rho, y\rho) \in S/\rho \times S/\rho | (x, y) \in \sigma\}.$

Then (i) σ/ρ is a congruence on S/ρ and (ii) $(S/\rho)/(\sigma/\rho) \cong S/\sigma$.

5 Construction of Free Γ -semigroups

Let X and Γ be two nonempty sets. A sequence of elements $x_1\alpha_1x_2\alpha_2...x_{n-1}\alpha_{n-1}x_n$ where $x_1, x_2, ..., x_n \in X$ and $\alpha_1, \alpha_2, ..., \alpha_{n-1} \in \Gamma$ is called a word over the alphabet X relative to Γ . The set S of all words with the operation defined from $S \times \Gamma \times S$ to S as $(x_1\alpha_1x_2\alpha_2...x_{n-1}\alpha_{n-1}x_n)\gamma(y_1\beta_1y_2\beta_2...y_{m-1}\beta_{m-1}y_m) = x_1\alpha_1x_2\alpha_2...x_{n-1}\alpha_{n-1}x_n\gamma y_1\beta_1y_2\beta_2...y_{m-1}\beta_{m-1}y_m$

is a Γ -semigroup. This Γ -semigroup is called free Γ -semigroup over the alphabet X relative to Γ and we denote it by $X^*\Gamma$. For clarity,we shall often write $u \equiv v$, if the words u and v are the same (letter by letter). The empty word is the word which has no letters. Hence,

$$X^*\Gamma = \{x_1\alpha_1x_2\alpha_2 \dots x_{n-1}\alpha_{n-1}x_n | \alpha_1, \alpha_2, \dots, \alpha_{n-1} \in \Gamma, x_1, x_2, \dots, x_n \in X\}$$

Closely related to the forgetful functor $\mathcal{U}: \Gamma - Sgrp \to Set$ such that $(S, \Gamma, \cdot) \mapsto S$ is the functor $F: Set \to \Gamma - Sgrp$ defined as follows: $X \mapsto (X^*\Gamma, \Gamma, \cdot)$.

For a function $f: X \to Y$ define $F(f): (X^*\Gamma, \Gamma, \Gamma, \cdot) \to (Y^*\Gamma, \Gamma, \cdot)$ such that

$$F(f)(x_1, x_2, ..., x_n) = f(x_1)\gamma_1 f(x_2)\gamma_2 ... f(x_{n-1})\gamma_{n-1} f(x_n)$$

where $x_i = a_1^i a_1^i \dots a_{m-1}^i a_{m-1}^i a_m^i$, i=1,2,...,n.

F as so defined is a functor.

Now suppose that $f: X \to \mathcal{U}(Y, \Gamma, \cdot)$ is any function from a set X to (the underlying set) of a Γ -semigroup Y. Then we can define a Γ -semigroup homomorphism $f^*: X^*\Gamma \to Y$ by

$$f^*(x_1, x_2, ..., x_n) = f(x_1)\gamma_1 f(x_2)\gamma_2 ... f(x_{n-1})\gamma_{n-1} f(x_n)$$

where $x_i = a_1^i a_1^i \dots a_{m-1}^i a_{m-1}^i a_m^i$, i=1,2,...,n.

Clearly, f^* is the unique Γ -semigroup homomorphism extending f, i.e.if $h: X^*\Gamma \to Y$ is a Γ semigroup homomorphism such that h(x) = f(x) for every $x \in X$ then $h = f^*$. Indeed,let $\iota: X \hookrightarrow X^*\Gamma$ be the embedding map and f as above. Define f^* as above, as well. Then $\iota f^* = f$. Now,let $h: X^*\Gamma \to Y$ be an arbitrary homomorphism with $\iota h = f$. For any $\chi_1, \chi_2, \dots, \chi_n \in X^*\Gamma$

 $h(x_1, x_2, ..., x_n) = f(x_1)\gamma_1 f(x_2)\gamma_2 ... f(x_{n-1})\gamma_{n-1} f(x_n) = f^*(x_1, x_2, ..., x_n)$ which implies that $h = f^*$.

This constitutes the socalled Universal Mapping Property for the free Γ -semigroup $X^*\Gamma$ generated by X. Another way of stating this result is that we have a function $Set(X, \mathcal{U}(Y, \Gamma, \cdot)) \to \Gamma - Sgrp((X^*\Gamma, \Gamma, \cdot), Y)$ which is a bijection. It's in fact an isomorphism and \mathcal{U} and F are a pair of adjoint functors.

Proposition 5.1. Let X be an alphabet and F let be a Γ -semigroup. Then F is a free Γ -semigroup on X relative to Γ if and only if $F \cong X^*\Gamma$.

Proof: Suppose $F \cong X^*\Gamma$. To show that F is a free Γ -semigroup on X, it is sufficient to show that $X^*\Gamma$ is a free semigroup on X. Let $\iota: X \to X^*\Gamma$ be the embedding map. So let S be a Γ -semigroup and $\varphi: X \to S$ be a map. Define $\varphi^*: X^*\Gamma \to S$ by $\varphi^*(x_1, x_2, ..., x_n) = \varphi(x_1)\gamma_1\varphi(x_2)\gamma_2 ... \varphi(x_{n-1})\gamma_{n-1}\varphi(x_n)$

It is easy to see that φ^* is a homomorphism and that $\iota \varphi^* = \varphi$. We now have to prove that φ^* is unique. So let $\psi: X^*\Gamma \to S$ be an arbitrary homomorphism with $\iota \psi = \varphi$. Then for any $x_1, \ldots, x_n \in X^*\Gamma$, we have

$$\psi(x_1, x_2, ..., x_n) = \psi(x_1)\gamma_1\psi(x_2)\gamma_2 ... \psi(x_{n-1})\gamma_{n-1}\psi(x_n)$$

$$= \varphi^*(x_1)\gamma_1\varphi^*(x_2)\gamma_2 ... \varphi^*(x_{n-1})\gamma_{n-1}\varphi^*(x_n)$$

$$= \varphi^*(x_1, x_2, ..., x_n)$$

These equalities hold because ψ is a homomorphism, $\iota\psi = \varphi = \iota\varphi^*$ and φ^* is a homomorphism,too. Hence, $\psi = \varphi^*$. Thus, φ^* is the unique homomorphism from $X^*\Gamma$ to S with $\iota\varphi^* = \psi$, and so $X^*\Gamma$ is free on X.

Let, now, F be a free Γ -semigroup on X relative to Γ . Let $\iota_1: X \hookrightarrow X^*\Gamma$ and $\iota_2: X \hookrightarrow F$ be the embedding maps. Putting $\varphi = \iota_2$ and S = F in the definition of freeness for F on X we see that there is a homomorphism $\iota_2^*: X^*\Gamma \to F$ with $\iota_1\iota_2^* = \iota_2$. Similarly, since F is free on X there is a homomorphism $\iota_1^*: F \to X^*\Gamma$ with $\iota_2\iota_1^* = \iota_1$. Therefore $\iota_1 = \iota_1\iota_2^*\iota_1^*$ and $\iota_2 = \iota_2\iota_1^*\iota_2^*$. Hence, by the uniqueness requirement in the definition of freeness, we have $\iota_2^*\iota_1^* = id_A$ and $\iota_1^*\iota_2^* = id_F$. Thus, ι_1^* and ι_2^* are mutually inverse homomorphisms and so $\cong X^*\Gamma$.

A family V of Γ -semigroups is called a variety of Γ -semigroups if it contains Γ -subsemigroups, all homomorphic images and all direct products of its elements.

We say that \mathcal{V} is generated by $\mathcal{U} \subseteq \mathcal{V}$ if \mathcal{V} is the smallest variety containing \mathcal{U} . This is equivalent to every member of \mathcal{V} being obtainable from algebras in \mathcal{U} via a sequence of taking homomorphic images, subalgebras and direct products (H,S and P).

Theorem 5.2. A variety \mathcal{V} is generated by $\mathcal{U} \subseteq \mathcal{V}$ if and only if every $A \in \mathcal{V}$ is in $HSP(\mathcal{U})$ i.e. there exist $\mathcal{U}_{\alpha} \in \mathcal{U}$ and $T \in \mathcal{V}$, which is a subalgebra of $\prod_{\alpha \in \Lambda} \mathcal{U}_{\alpha}$ (where Λ is an indexing set) and an onto morphism $\varphi: T \to A$.(see [8]).

The following proposition also holds:

Proposition 5.3. Let \mathcal{V} be a variety and let \mathcal{U} consists of the free objects of \mathcal{V} . Then \mathcal{V} is generated by \mathcal{U} . (see [8], Proposition 1.4.4.).

The following theorem is a generalization of Theorem 3.3. in [7]. Its proof is the same as that of Theorem 3.3. in [7], but for the reader's convienence we will give its proof here.

Theorem 5.4. For each Γ -semigroup S there exists an alphabet Y and an epimorphism $\psi: Y^*\Gamma \twoheadrightarrow S$.

Proof: Let X be any generating set of S; we may even choose as X the set S itself. Let Y be an alphabet such that |Y| = |X|. Let $\psi_0: Y \to X$ be a bijection. By definition of the free Γ -semigroup, the bijection ψ_0 has a homomorphic extension $\psi: Y^*\Gamma \to S$. This extension is surjective, since $\langle \psi(X) \rangle_S = \psi(\langle X \rangle_S) = \psi(S)$, (because X generates S).

Corollary 5.4.1. Every Γ -semigroup is a quotient of a free semigroup.Indeed

 $S \cong Y^*\Gamma/\ker(\psi)$ for a suitable epimorphism ψ .

Let $X \subseteq S$, where S is a Γ -semigroup. We say that $x = x_1 \alpha_1 x_2 \alpha_2 \dots x_{n-1} \alpha_{n-1} x_n$ is a factorization of x over X relative to Γ . Usually, this factorization is not unique, but...

Theorem 5.5. A Γ -semigroup S is freely generated by Y if and only if every $x \in S$ has a unique factorization over Y relative to Γ .

Proof: We observe, first, that the claim holds for the word semigroup $X^*\Gamma$, for which X is the only minimal generating set. Let X be an alphabet such that |X| = |Y| and let $g_0: Y \to X$ be a bijection. Suppose that Y generates S freely and that there is an $x \in S$, for which

$$x = x_1 \alpha_1 x_2 \alpha_2 \dots x_{n-1} \alpha_{n-1} x_n = y_1 \beta_1 y_2 \beta_2 \dots y_{m-1} \beta_{m-1} y_m , (x_i, y_j) \in X, (\alpha_i, \beta_j) \in \Gamma$$

For the homomorphic extension g of g_0 we have

$$g(x) = g_0(x_1)\alpha_1 g_0(x_2)\alpha_2 \dots g_0(x_{n-1})\alpha_{n-1}g_0(x_n)$$

= $g_0(y_1)\beta_1 g_0(y_2)\beta_2 \dots g_0(y_{m-1})\beta_{m-1}g_0(y_m)$

in $X^*\Gamma$. Since $X^*\Gamma$ satisfies the condition of the theorem and $g_0(x_i), g_0(y_i)$ are letters for each i, we must have $g_0(x_i) = g_0(y_i)$ for all i = 1, 2, ..., n (and m = n). Moreover, g_0 is injective, and so $x_i = y_i$. Hence $\alpha_i = \beta_i$ for all i = 1, 2, ..., n. Thus the claim holds for S, also. Suppose , now that S satisfies the uniqueness condition. Denote by $h_0 = g_0^{-1}$ and let $h: X^*\Gamma \to S$ be the homomorphic extension of h_0 . But, h is surjective, because Y generates S. It is also injective, because if h(u) = h(v) for some words $u \neq v \in X^*\Gamma$, then h(u) would have two different factorizations over Y. Hence h is an isomorphism, and the claim is proved.

6 Some properties of free Γ -semigroups

Proposition 6.1.The universal semigroup Σ of a free Γ -semigroup is not a free semigroup but there is a subset $S = \{x_1\alpha_1x_2\alpha_2 \dots x_{n-1}\alpha_{n-1}x_n : x_i \in X, \alpha_i \in \Gamma, i = 1,2,\dots,n\}$ of Σ such that for the pair (S, \circ) where " \circ " is defined as follows: $w_1 \circ w_2 = w_1\gamma_0w_2$ (we shall denote it by S_{γ_0}) is free on Y where $Y = \{x_1\alpha_1x_2\alpha_2 \dots x_{n-1}\alpha_{n-1}x_n : x_i \in X, \alpha_i \in \Gamma, \alpha_i \neq \gamma_0, \forall i = 1,2,\dots,n\}$.

Proof: The universal semigroup Σ of a free Γ -semigroup is not a free semigroup because, by Lemma 2.10., it follows that there exist relations between the words such that, for example, $\alpha = \alpha \beta$. From the Proposition 5.1., it follows that to show that S_{γ_0} is free we have to show that $S_{\gamma_0} \cong Y^*\Gamma$, where $Y^*\Gamma$ is free. Let us show first that $Y^*\Gamma$ is free where from the construction $Y \subset X$. We know that $X^*\Gamma$ is free on X. That is the UMP is satisfied i.e. the following diagram commutes.

$$X \hookrightarrow X^* \Gamma$$
$$\varphi \searrow \downarrow \varphi^*$$
$$T$$

Now, let we see the corresponding diagram

$$Y \hookrightarrow Y^* \Gamma$$

$$\varphi|_Y \searrow \downarrow \varphi^*|_{Y^* \Gamma}$$

$$T$$

It is obvious that this diagram commutes as well. This means that $Y^*\Gamma$ is a free semigroup on Y. But, it is clear that $S_{\gamma_0} \cong Y^*\Gamma$ (they have the same base). So, by the Proposition 5.1., it follows that S_{γ_0} is free on Y.

Let us denote with $f^*: (S_1 \cup \Gamma)^*/\rho_1 \to (S_2 \cup \Gamma)^*/\rho_2$ such that $f^*(\rho_1(x)) = \rho_2(f(x))$ where $f: S_1 \to S_2$ is a homomorphism of Γ -semigroups. We observe that if $x = y \Longrightarrow f(x) = f(y)$. Then we will have $\rho_2(f(x)) = \rho_2(f(y))$ which implies that $f^*(\rho_1(x)) = f^*(\rho_1(y))$. Therefore, f^* is well defined. Next, we prove that f^* is a homomorphism. But, by the definition of f^* and the fact that f is a homomorphism we will have:

$$f^*(\rho_1(x\gamma y)) = \rho_2(f(x\gamma y)) = \rho_2(f(x)\gamma f(y)) = \rho_2(f(x))\gamma \rho_2(f(y)) = f^*(\rho_1(x))\gamma f^*(\rho_1(y))$$

Thus, f^* is a homomorphism.

Now, we construct a functor F between a Γ -semigroup S and its universal semigroup Σ as follows:

 $F(S) = \Sigma = (S \cup \Gamma)^*/\rho$ and $F(f) = f^*$ where f is a homomorphism of Γ -semigroups. Let $\psi: S_1 \to S_2$ and $\varphi: S_2 \to S_3$ be homomorphisms of Γ -semigroups. We have $\varphi \circ \psi: S_1 \to S_3$ and we prove that $(\varphi \circ \psi)^* = \varphi^* \circ \psi^*$. But,

$$(\varphi \circ \psi)^* (\rho_1(x)) = \rho_3 (\varphi \circ \psi(x)) = \rho_3 (\varphi(\psi(x))) = \varphi^* (\rho_2(\psi(x))) = \varphi^* \circ \psi^* (\rho_1(x))$$

Thus, $(\varphi \circ \psi)^* = \varphi^* \circ \psi^*$. Therefore, $F(\varphi \circ \psi) = F(\varphi) \circ F(\psi)$. Let $id_S: S \to S$ be the identity homomorphism of the Γ -semigroup S. We have $F(id_S) = id_S^* = id_{(S \cup \Gamma)/\rho}$, because id_S^* and $id_{(S \cup \Gamma)^*/\rho}$ are identity homomorphisms of $(S \cup \Gamma)^*/\rho$. Therefore, F is a covariant functor.

From the Proposition 6.1., it follows that the results of Howie can be implanted on Γ semigroups through the mechanism of passing from the Γ -semigroup to its universal
semigroup associated to Γ . So,we now can formulate and prove these properties of free Γ semigroups.

Proposition 6.2.The free monoid $MX^*\Gamma$ is cancellative.

Proof: This follows from the fact that two words in the alphabet X represent the same element of $MX^*\Gamma$ if and only if they are identical.

7 Presentations of Γ -semigroups

Let S be a Γ -semigroup. By Theorems 4.5, 5.4. and its Corollary 5.4.1., it follows that

$$S \cong Y^*\Gamma/\ker(\psi)$$

(where $\psi: Y^*\Gamma \twoheadrightarrow S$ is an epimorphism and $Y^*\Gamma$ a suitable word Γ -semigroup), since now $\psi(Y^*\Gamma) = S$. We say that ψ is a homomorphic presentation of S. The letters in Y are called generators of S, and if $(u,v) \in \ker(\psi)$, (which means that $\psi(u) = \psi(v)$) then u=v is called a relation (or an equality) in S. Define a presentation of S as $S = \langle Y|R \rangle$ ($Y = \{y_1, ..., y_n\}$ and $R = \{u_i = v_i | i \in I\}$) if $\ker(\psi)$ is the smallest congruence of $Y^*\Gamma$ that contains the relation $\{(u_i, v_i) | i \in I\}$. In particular,

$$\psi(u_i) = \psi(v_i) \text{ for all } u_i = v_i \text{ in } R. \tag{7.1}$$

The set R of relations is supposed to be symmetric, that is , $u = v \Rightarrow v = u$ where u = v is in R. Recall that the words $w \in Y^*\Gamma$ are not elements of S but of the word semigroup $Y^*\Gamma$, which is mapped onto S. We say that a word $w \in Y^*\Gamma$ presents the element $\psi(w)$ of S. The same element can be presented by many different words , but if $\psi(u) = \psi(v)$, then both u and v present the same element of S.

Let $S = \langle Y | R \rangle$ be a presentation. Then, S satisfies a relation u = v (that is, $\psi(u) = \psi(v)$) if and only if there exists a finite sequence $u = u_1, u_2, ..., u_{k+1} = v$ of words such that u_{i+1} is obtained from u_i by substituting a factor u_i by v_i for some $u_i = v_i$ in R.

So, we say that a word v is directly derivable from the word u, if

$$u \equiv w_1 u' w_2$$
 and $v \equiv w_1 v' w_2$ for some $u' = v'$ in R . (7.2)

(In order to avoid confusion we use the symbol ' \equiv ' for the equality of two words in $Y^*\Gamma$). It is clear that if v is derivable from u, then u is derivable from v (R is supposed to be symmetric), and, in the notation of (7.2),

$$\psi(u) = \psi(w_1 u' w_2) = \psi(w_1) \psi(u') \psi(w_2) = \psi(w_1) \psi(v') \psi(w_2) = \psi(w_1 v' w_2) = \psi(v)$$

Thus, u = v is a relation in S.

The word v is derivable from u, if there exists a finite sequence $u \equiv u_1, u_2, ..., u_k \equiv v$ such that for all $j = 1, 2, ..., k - 1, u_{j+1}$ is directly derivable from u_j . If v is derivable from u, then $\psi(u) = \psi(v)$, too, because $\psi(u) = \psi(u_1) = \cdots = \psi(u_k) = \psi(v)$. So, u = v is a relation in S. This can be written as

$$u \equiv u_1 = \dots = u_k \equiv v$$

We denote by R^c the smallest congruence containing R.

Theorem 7.1. Let $S = \langle Y | R \rangle$ be a presentation (with R symmetric). Then

$$R^c = \{(u, v) | u = v \text{ or } v \text{ is derivable from } u\}$$

Hence u = v if and only if v is derivable from u.

Proof: Define the relation ρ by

 $u\rho v \Leftrightarrow u = v \text{ or } v \text{ is derivable from } u.$

Theorem 7.2. Let Y be an alphabet and $R \subseteq Y^*\Gamma \times Y^*\Gamma$ a symmetric relation. The Γ -semigroup $S = Y^*\Gamma/R^c$, where R^c is the smallest congruence containing R, has the presentation

$$S = \langle Y | u = v \text{ for all } (u, v) \in R \rangle$$

Moreover, all Γ -semigroups having a common presentation are isomorphic.

Proof: It follows immediately from the above.

References:

- 1. John M.Howie, (2003), Fundamentals of Semigroup Theory, Clarendon Press, Oxford.
- 2. M.K.Sen and N.K.Saha, (1986), On Γ-semigroup I, *Bull.Cal.Math.Soc.*78, 181-186.
- 3. E.Pasku, (2013) The universal semigroup of a Γ-semigroup, https://arxiv.org, 1-7.
- 4. A.Seth, (1992) Γ-Group congruences on regular Γ-Semigroups, *Int.J.Math.&Math.Sci* 15, 103-106.
- 5. R.Chinram and K.Tinpun, (2009), Isomorphism Theorems for Γ-Semigroups and ordered Γ-Semigroups, *Thai J.Math.*,7(2),231-241, www.math.science.cmu.ac.th/thaijournal.
- 6. H.Hedayati, (2013), Isomorphisms via Congruences on Γ-Semigroups and Γ-Ideals, *Thai J.Math.*11(3), 563-575, http://thaijmath.in.cmu.ac.th.
- 7. Tero Harju, (2010), *Lecture Notes on Semigroups*, Department of Mathematics, University of Turku, Finland.
- 8. Claire Cornock, (2011), Restriction Semigroups: Structure, Varieties and Presentations, PhD Thesis, University of York.