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Abstract:  
We have dealt with some aspects of curvature and normal curvature. The purpose of this research is to find the normal 
curvature numerically in the cylindrical coordinate system using Matlab. Matlab is an interactive working environment 
that allows users to perform fairly complex computational tasks using only a few commands. We followed the Applied 
Mathematical method using a new mathematical technique (Matlab) and we found that finding the normal curvature in 
a cylindrical coordinate system using a new mathematical technique is more accurate and faster than numerical finding. 
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1.INTRODUCTION:  
The differential geometry of curves and surfaces has two aspects. One, which may be called classical differential 
geometry, started with the beginnings of calculus. Roughly speaking, classical differential geometry is the study of local 
properties of curves and surfaces. By local properties we mean those properties which depend only on the behavior of 
the curve or surface in then neighborhood of a point. The methods which have shown themselves to beadequate in the 
study of such properties are the methods of differential calculus. Because of this, the curves and surfaces considered in 
differential geome try will be defined by functions which can be differentiated a certain number of times. [13,pp1] 
Differential geometry is a branch of mathematics using calculus to study the geometric properties of curves and 
surfaces. It arose and developed as a result of and in connection to the mathematical analysis of curves and surfaces. The 
theory developed in this study originates from mathematicians of the 18th and 19th centuries, mainly; Euler (1707-
1783), Monge (1746-1818) and Gauss (1777-1855). Mathematical study of curves and surfaces has been developed to 
answer some of the nagging and unanswered questions that appeared in calculus, such as the reasons for relationships 
between complex shapes and curves, series and analytic functions11. Study of curvatures is an important part of 
differential geometry[11,pp6].The concept of Curvature and its related, constitute the central object of study in 
differential Geometry[8,pp51] Differential geometry is largely concerned with the same problemsas Euclidean 
geometry{namely how to measure lengths, angles, and areas{but done in a more general setting usingthe tools of 
calculus and linear algebra [4,pp1].The curvatures of a smooth surface are local measures of its shape. Here we 
consideranalogous quantities for discrete surfaces, meaning triangulated polyhedral surfaces. Often the most useful 
analogs are those which preserve integral relations for curvature, like the Gauss/Bonnet theorem or the force balance 
equation for mean curvature. For simplicity, we usually restrict our attention to surfaces in euclidean three-space E3, 
although some of the results generalize to other ambient manifolds of arbitrary dimension.[10,pp1] 
 
2.Curves: 
A regular curve is a parametrized curve whose velocity is never zero. A regularcurve can be reparametrized by arc 
length. 
i.Regular Curves: 
Definition (2.1): A parametrized curve c: [a,b] → M is regular if its velocity c′(t)is never zero for all t in the domain 
[a,b]. In other words, a regular curve in M is an immersion: [a,b]→M.[12,pp9] 
 
Definition (2.2): A parametrized differentiable curve α: I→R3 is said to be regular if α′(t)≠ 0 for all t∈I..[13,pp22] 
 
ii.Plane Curves: 
Curves are one-dimensional geometric objects which arestraight or curved within a higher dimensional ambient 
space.They are widely used to represent thin physical objects such asrods and wires, as well as to describe the trails of 
movingobjects. Less common but no less interesting examples ofcurves include singular features under physical 
processes withconcentration mechanisms. e.g. rivers in an eroded terrain ortornadoes in a fluid. 
Mathematically, one views curves 
a. Explicitly - a curve is a family of points that can becontinuously parametrized by a single variable. 
b. Implicitly - a curve in the plane R2 is the level set{(x, y) ∈R2 | f(x, y) = 0} of a continuous scalar function 
f :R2 → R ; a curve in R3 is the intersection of two level setsurfaces f(x, y , z) = 0, g(x, y , z) = 0. 
These two representations are locally equivalent in genericcases. [1, pp11] 
 
iii. Smooth curves: 
It will be convenient to strengthen the differentiability condition: a curve �: (a,b) → R3is smooth if it is infinitely 
differentiable; that is, the nth derivative�(n)(t) exists forall t ∈ (a,b) and n≥ 1, where 

�(0)≔ � and 

�(n) (t) ≔lim
�→�

����(���)�����(�)

�
for all t ∈ (a, b). 

 
In terms of coordinates, the curve is smooth if and only if each of its coordinate functions is infinitely differentiable. 
[6,pp16] 
 
3.Curvature: 
For a unit-speed smooth space curve � the magnitude of its acceleration| �′′(s)| is called its curvature at the time s. If�  is 
simple, thenwe can say that | �′′(s)| is the curvature at the point p = �(s) withoutambiguity. The curvature is usually 
denoted by k(s) or �(�)� and inthe case of simple curves it might be also denoted by k(p) or�(�)�.The curvature 

measures how fast the curve turns; if you drive along a plane curve, then curvature describes the position of your 
steeringwheel at the given point (note that it does not depend on your speed). In general, the term curvature is used for 
anything that measureshow much a geometric object deviates from being straight; for curves,it measures how fast it 
deviates from a straight line.[3,pp27-28] 
 
Definition (3.1): 
We are looking for a function that measures the angle of rotation for the unit normal vector, or equivalently, the unit 
tangent vector. In terms of the Gaussmap, the head of the unit normal vector always lies on the unit circle. Therefore,the 
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derivative of the unit normal vector must always be tangent to the unit circle.This is a manifestation of the fact that the 
derivative of a vector function that has constant magnitude is always perpendicular to the original vector function. 
Twonotions point the way. First, over small distances, the arc of a circle near a pointon the circle and the tangent line 
through that point are very similar. Second, the length of an arc of the unit circle is equal to the corresponding angle 
measured inradians. Therefore, a derivative of the unit normal vector measures change alonga tangent to the unit circle 
(as in the Gauss map), this change is essentially the same as the change along the unit circle, which is equal to a change 
in the directionof the normal vector measured in radians. In other words, the conclusions of thelast section suggest that 
the curvature can be defined as the derivative of the unit normal vector with respect to arc length. It can also be defined 
as the derivative ofthe unit tangent vector with respect to arc length.  
 

That is:k(s) = �
��

��
� = �

��

��
�.[7,pp6-7] 

Calculus and Differential Geometry: An Introduction to Curvature. Donna Dietz. Howard Iseri 
 
Definition (3.2): Let S be a surface, p ∈ S and let N(p) ∈ R3 be a vector orthogonal to TpS. Given v ∈TpS of length 1, 
orient the plane Hvby choosing{v,N(p)} as positive basis. The normal curvature of S at p along v is the oriented curvature 
at p of the normal section of S at p along v (considered as a plane curve contained in Hv). [14, pp184] 
 
Definition (3.3): If is a unit-speed curve with parameter tits curvature k(t) at �(t)is defined to be || �′′(t) ||.[19,pp13] 
 
Definition (3.4): If two curves�1(t) and �2(u) intersect at a point P so that their derivatives point in the same direction, 
then we say that the two curves have firstordercontactat P. In this case, taking P to be the origin, and the curves to be 
moving in the direction of the positive X-axis and taking the normal vector to be on the left-hand side so that it points in 
the direction of the positive Y-axis at P, the two curves �1(t) and �2(u) given above can each be written as graphs of 
functions y = f(x) and y = g(x) so that: 

F(0) = g(0) = 0 ,
��

��
 (0) =

��

��
 (0) = 0 . 

Then, if we further have: 
���

��� (0) =
���

��� (0) we say that the two curves have second or dercontact.pp16 

 
Theorem (3.5): The osculating circle at a point �(t0) of a regular curve �(t) makes second order contact with the curve at 
that point. Conversely, any circle that makes second order contact with �(t) at �(t0) must be the osculating circle at that 
point. 
 
Proof: Take a coordinate system (x, y) on the plane as in Definition (3.4) at �(t0) and then the curve can be represented 

as a graph y = f(x), where f(0) =
��

��
(0) = 0. So the Taylor expansion of f(x) at  

x = 0 is : 

f(x) = 
�(��)

�
�� + o(��).                          (3.1) 

Here o(.) is Landau’s symbol. 
 
The graph y = f(x) has second order contact with the X-axis (i.e., the graph of y = 0) at the origin if and only if k(t0) = 0. 
So, we consider only the case k(t0) ≠0 from now on. By reflecting the curve across the X-axis if necessary, we may 
assume k(t0)> 0 without loss of generality. Here, the circle of radius a turning to the left and tangent to the X-axis at the 

origin can be represented as a graph y = a −√�� + �� which can be expanded as 

y = 
�

� �
��+ o(��)                                  (3.2) 

 

by (3.1) and the fact that the curvature of the circle is
�

�
. Comparing (3.1) and (3.2), we can conclude that the curve and 

the circle have second order contact at the origin if and only if a = 
�

� (��)
 [16,pp16-17] 

 
Theorem (3.6): The curvature of a regular curve, �(t). is given by : 

k(t) = 
|��×���|

|��|�  where a dash indicates a derivative wrtt. [16, pp15] 

 
Proposition (3.7): A space curve is a line if and only if its curvature is everywhere 0. 
Proof. The general line is given by �(�) =  �� + �for some unit vector vand constant vector c. Then�′(s) = T(s) = vis 

constant, so k = 0. Conversely if k = 0 then T(s)=T0is a constant vector and integrating, we obtain �(s) = ∫ �(�)�� +
�

�

�(0) = � �� + �(0). This is, once again, the parametricequation of a line.[17,pp15] 
 
Definition (3.8): The Lie bracket [X, Y ] of two vector fields X and Yon a surface M is defined as the commutate or 

[X, Y ] = XY − Y X  , 
 
meaning that if f is a function on M, then [X, Y](f) = X(Y (f)) − Y (X(f)). 
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Proposition (3.9): The Lie bracket of two vectors X , Y ∈T(M) is another vector in T(M). 
Proof: If suffices to prove that the bracket is a linear derivation on the space of   �� functions. 
Consider vectors X, Y ∈T(M) and smooth functions f, gin M. Then, 

[X, Y ](f + g) = X(Y (f + g)) − Y (X(f + g)) 
= X(Y (f)) − Y (X(f)) + X(Y (g)) − Y (X(g)) 
= [X, Y ](f) + [X, Y ](g), 

and 
[X, Y ](fg) = X(Y (fg)) − Y (X(fg)) 
= X[fY(g) + gY(f)] − Y [fX(g) + gX(f)] 
= X(f)Y (g) + fX(Y (g)) + X(g)Y (f) + gX(Y (f)) 
−Y (f)X(g) − f(Y (X(g)) − Y (g)X(f) − gY(X(f)) 
= f[X(Y (g)) − (Y (X(g))] + g[X(Y (f)) − Y (X(f))] 
= f[X, Y ](g) + g[X, Y ](f).[8,pp52] 

 
i. Curvatures of Smooth Surfaces: 
Given a (two-dimensional, oriented) surface M (smoothly immersed) in E3we understand its local shape by looking at 
the Gauß mapv ∶M → S2 given by the unit normal vector v = vp at each pointp ∈M. Its derivative at p is a linear map 
from Tp Mto ���

S2. Since these spaces are naturally identified, being parallel planesin E3 we can view the derivative as 

an endomorphism��:Tp M→Tp M. The map ��is called the shape operator (orWeingarten map). The shape operator is 

the complete second-order invariant (orcurvature) which determines the original surface M. Usually however, it is more 
convenient not to work with the operator�� butinstead with scalar quantities. Its eigenvalues�� and �� arecalled 

principal curvatures, and (since they cannot be globallydistinguished) it is their symmetric functions which have the 
most geometric meaning We define the Gauss curvature K =����as the determinant of Spand the mean curvature H= ��+  
�� as its trace. Note that the sign of H depends on the choice of unit normalv. so often it is morenatural to work with the 
vector mean curvature (or mean curvaturevector) H = Hv Note furthermore that some authors use the opposite sign on 

Sp and thus Hand many us H = 
��� ��

�
 justifying the name mean curvature. Our conventions mean that the mean 

curvature vector for a convex surface point inwards (like the curvature vector for a circle). For a unit sphere oriented 
with inward normal the Gauss map v is the antipodal map Sp = I and H≡ 2. [10,pp3]. 
 
ii. The Curvature of a Planar Smooth Curve: 
A typical example of a geometric property of order 2 is the curvature k(p) ofa (regular) curve C at a point p. To compute 
it, we first need to calculate theunit tangent vector field t, which involves a first derivative, and then take the derivative 

of the result. Using the arc lengths, ( 
��

��
)p= k(p)n(p), where n is the normal vector field of C. If the geometric image of 

the curve C is smooth enough, it can be locally represented by the graph (x, f(x)) of a smooth function f, such that p = (0, 
0), (i.e. f(0) = 0), and such that the tangent to C at p is collinear to the x-axis, (i.ef′ (0) = 0). Then,  
k(p) = f′′(0). Let ν= f′′′(0). Near p = (0, 0) we have: 

 

f(x) = 
� ��

�
+

� ��

�
+o(��).[9,pp159-160] 

 
4. Normal Curvature: 

Definition (4.1): Let Sbe a regular surface of class C2, and let �⃗ :U → R3 be a parametrization of a coordinate 
neighborhood V of S.Let �⃗  : I → R3 be a parametrization of class C2 for a curve C thatlies on S in V. The normal 
curvature of S along C is the function 

kn(t) =
�

�� �����⃗  . ���⃗   = k (��⃗ , ���⃗  ) = kcos �, 

 

where�is the angle between the principal normal vector ���⃗ of thecurve and the normal vector ~N of the surface. 
[18,pp210] 
 
Definition (4.2): Let S be a surface, p ∈ S and let N(p) ∈ R3 be a verso orthogonal to TpS. Given v ∈TpS of length 1, 
orient the plane Hvby choosing{v,N(p)} as positive basis. The normal curvature of S at p along v is the oriented curvature 
at p of the normal section of S at p along v (considereredas a plane curve contained in Hv). [14,pp184] 
 
Definition (4.3): Normal curvature depends only on the tangent vector t of the curve at P and not on the curve itself. For 
a non-zero tangent vector t = aru + brv , and the definition of the normal curvature of S in direction t, 

 

  �� =  
�

|�|� ((�� . ��)  a� + (�� . �� + �� . ��)�� + (�� . ��) b� ). [11, pp4] 

 
Definition (4.4): Let p be a point ofM ⊂ ��. The maximum and minimum values of the normal curvature k(u) of �at 
pare called the principal curvatures of M atp and are denoted by �� and ��. The directions in which these extreme values 
occur are called principal directions of M atp. Unit vectors in these directions are called principal vectors of M at p. 
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Definition (4.5): A point p of M ⊂R3 is umbilic provided the normal curvature k(u) is constant on all unit tangent 
vectors uat p.[5,pp212] 
 
Propositions (4.6): If �is a unit-speed curve on an oriented surface S, its normal curvature is givenbykn =〈γ′ ,γ′〉.If σis a 
surface patch of S and γ(t) = σ(u(t), v(t)) is a curve in σ, 

�� = � ���
+ 2 � ���� + ����

 
 
This result means that two curves which touch each other at a point pof asurface (i.e., which intersect at pand have 
parallel tangent vectors at p) havethe same normal curvature at p. 
 
Proof: Since γ′is a tangent vector to S, N.γ′= 0. Hence, N. γ′′= − N′ . γ′′so 

�� = �. ��� =  ��. �� =  〈 W(γ�), γ�〉 =  〈 γ′ , γ′ 〉 
 

since�� =  
�

��
G �γ(t)� =  −W ( γ�) .[2,pp167] 

 
Example (4.7): 
Let M: x2+ y2 = 1 be a cylinder with p=(1,0,0) and V(p)=(1,0,0). A unit vector u ∈Tp(M) has the form u = (0,u1 ,u2) with 
(u1)2+(u2)2= 1. A normal for the plane determined by u and U(p) is (0, -u2, u1), so the plane's equation is z = (u2/u1 )y. 

The intersection of the plane with M is the set {(�1 − ��, y, (u2/u1 )y)}for any y.  

Parameterize � by :  �(�) = ( √1 − ��, � , ( 
��

�� ) � ) 

With 

��(�) = ( −� /√1 − ��  , 1 , �� /�� ) and �"(t) = (-1/(1 - t2)3/2, 0, 0). 

                
 

Figure (1) : Max; k(u) = 0;               Figure (2) : Min; k(u) = -I; 
u1= 0;u = (0,0, I) in directionu1= 1 ; u = (0, 1.0) in direction of rulings of velocity vector of directrix 
 
Then we have , 

T(0) = (0,1, ��/  �� ) / �1 +  (��/ ��)� 

B(0) = ��(0)  ×  ���(0) /  |  ��(0) × ���(0)| 
Hence , N(0) = - U(p), so we need a - sign in k(u) = - ��(0). Further , 

��(0) = 
| ��(�) × ���(�)   |

|��(�)|�  = 
((�� /��)� ��)�/�

(��(�� /��)� )�/�=(u1)2 

 
Since (u1 )2 + (u2)2 = 1. Hence, k (u) = - (u1 )2. This is negative or zero. Now, sinceu   = (0, u1 , u2) is on the unit circle in 
the YZ-plane, max k(u) = 0 occurs when u1 = 0 and min k(u)=   -1 occurs when u1 = 1. The corresponding geometry is 
clear. The cylinder M is flat in the rulingdirections and bends away from the normal in directrix directions. Indeed, the 
bending is whatwe might call circular. 
 
Solution: 
% Figure A 
clearall 
clc 
symsrtu1u2sq 
t = 0 : 0.2 : 1; 
u1=0.2; 
u2=0.2; 
q=sqrt(1-t); 
r=t; 
s=(u1/u2)*t; 
q=diff(q) 
r=diff(r) 
s=diff(s) 
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holdon 
[q, r, s] =cylinder(q); 
[q, r, s] =cylinder(r); 
[q, r, s] =cylinder(s); 
holdoff 
surf(q, r, s); 
gridon 
 
Result: 
q =  
   -0.1056   -0.1198   -0.1421   -0.1852   -0.4472 
 
r = 
    0.2000    0.2000    0.2000    0.2000    0.2000 
 
s = 
    0.2000    0.2000    0.2000    0.2000    0.2000 
 
Represent the Solution Graphically: 

 
Figure (3): Max; k(u) = 0;u1= 0; u = (0,0, I) in directionof rulings 

 
Solution: 
% Figure B 
clearall 
clc 
symsrtu1u2sq 
t = 0 : 0.2 : 1; 
u1=0.2; 
u2=0.2; 
q=sqrt(1-t); 
r=t; 
s=(u1/u2)*t; 
q=diff(diff(q)) 
r=diff(diff(r)) 
s=diff(diff(s)) 
holdon 
[q, r, s] =cylinder(q); 
[q, r, s] =cylinder(r); 
[q, r, s] =cylinder(s); 
holdoff 
surf (q, r, s). 
gridon 
 
Result: 
q = 
   -0.0143   -0.0223   -0.0431   -0.2620 
 
r = 
   1.0e-15 * 
         0   -0.0555    0.1110   -0.1110 
 
s = 
   1.0e-15 * 
         0   -0.0555    0.1110   -0.1110 
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Represent the Solution Graphically: 

 
Figure (4): Min; k(u) = -I;u1= 1 ; u = (0, 1.0) in Direction of Velocity Vector of Directrix 

 
Results: 
After we found the  normal curvature in cylindrical system using a new mathematical technique we reached to the 
following some results :A new mathematical technique gives us a precise results of high speed compared with that of  
numerical, also we stated the ability capability of  graphs or diagram drawing to any normal curvature via a new 
mathematical technique , we explained the possibility of  the finding  normal curvature  by a new mathematical 
technique with a very high rate and accuracy finally we  can considered a new mathematical technique as a  theory 
which is considered one of the most important mathematical technique find the normal curvature and the other 
mathematical conceptions . 
 
Conclusion: 
Finally we can say that the method which we used in this paper help us to find the most accurate results and drawing 
them in a more rapid, attractive and clear way. Therefore, we hope that researchers will use this method (A New 
Mathematical Technique NMT) in their future scientific papers. 
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