GENERALIZED ESTABLISH JENSEN TYPE ADDITIVE $\left(\lambda_{1}, \lambda_{2}\right)$-FUNCTIONAL INEQUALITIES WITH $3 k$-VARIABLES IN $\left(\alpha_{1}, \alpha_{2}\right)$-HOMOGENEOUS FSPACES

LY VAN AN*

*Faculty of Mathematics Teacher Education, Tay Ninh University, Tay Ninh, Vietnam.

*Corresponding Author:

lyvanan145@gmail.com, lyvananvietnam@gmail.com.

Abstract

In this paper, we study to solve two additives (λ_{1}, λ_{2})-functional inequalities with $3 k$-variables in $\left(\alpha_{1}, \alpha_{2}\right)$-homogeneous F spaces. Then we will show that the solutions of the first and second inequalities are additive mappings. That is the main result in this paper.

Keywords: Complex Banach space, Hyers-Ulam-Rassias stability, Additive (λ_{1}, λ_{2})-Functional Inequalities, (α_{1}, α_{2})-Homogeneous F spaces.

Mathematics Subject Classifcation: Primary 4610, 4710, 39B62, 39B72,

1. INTRODUCTION

Let X and Y be a normed spaces on the same field K , and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$. We use the notation $\|\cdot\|$ for all the norm on both X and Y. In this paper, we investisgate some additive $\left(\lambda_{1}, \lambda_{2}\right)$-functional inequality in $\left(\alpha_{1}, \alpha_{2}\right)$-homogeneous F-spaces. In fact, when X is a α_{1}-homogeneous F -spaces and that Y is a α_{2}-homogeneous F -spaces we solve and prove the complex Banach space of two forllowing additive (λ_{1}, λ_{2})-functional inequality.

$$
\begin{align*}
& \left\|f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)-2 \sum_{j=1}^{k} f\left(x_{j}\right)-2 \sum_{j=1}^{k} f\left(y_{j}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\lambda_{1}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\|_{\mathbf{Y}} \\
& +\left\|\lambda_{2}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(y_{j}\right)+\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\|_{\mathbf{Y}} \tag{1.1}
\end{align*}
$$

and when we change the role of the function inequality (1.1), we continue to prove the following function inequality.

$$
\begin{align*}
& \left\|f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right\| \\
& \leq\left\|\lambda_{1}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\sum_{j=1}^{k} f\left(x_{j}-y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-2 \sum_{j=1}^{k} f\left(x_{j}\right)\right)\right\| \\
& +\left\|\lambda_{2}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\| \tag{1.2}
\end{align*}
$$

where λ_{1}, λ_{2} are fixed nonzero complex numbers with $G\left(\lambda_{1}, \lambda_{2}\right)$-functionalinequality. $\alpha_{1}, \alpha_{2} \in \mathrm{R}+, \alpha_{1}, \alpha_{2} \leq 1$.

$$
(\mathbb{C} \backslash\{0\}, \mathbf{Y})=\left\{G: \mathbb{C} \backslash\{0\} \rightarrow \mathbf{Y}, G\left(\lambda_{1}, \lambda_{2}\right)=1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}<1\right\}
$$

The Hyers-Ulam stability was first investigated for functional equation of Ulam in [1] concerning the stability of group homomorphisms.
The functional equation

$$
f(x+y)=f(x)+f(y)
$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping.
The Hyers [2] gave firts affirmative partial answer to the equation of Ulam in Banach spaces. After that, Hyers'Theorem was generalized by Aoki [3] additive mappings and by Rassias [4] for linear mappings considering an unbouned Cauchy diffrence. Ageneralization of the Rassias theorem was obtained by $\mathrm{G} a$ vruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The Hyers-Ulam stability for functional inequalities has been investigated such as in [5],[6],[7]. Gila'nyi showed that if it satisfies the functional inequality

$$
\begin{equation*}
\|2 f(x)+2 f(y)-f(x-y)\| \leq\|f(x+y)\| \tag{1.3}
\end{equation*}
$$

Then f satisfies the Jordan-von Newman functional equation

$$
\begin{equation*}
2 f(x)+2 f(y)=f(x+y)+f(x-y) \tag{1.4}
\end{equation*}
$$

. Gila'nyi [6] and Fechner [8] proved the Hyers-Ulam stability of the functional inequality (1.3).
Next Choonkil Park [9] proved the Hyers-Ulam stability of additive β-functional inequal- ities. Recently, the author has studied the addition inequalities of mathematicians in the world as [5] [8] [10]-[24] and I have introduced two general additive function inequalities (1.1) and (1.2) based on the the additive function inequalities and the following additive functional equations

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} f\left(x_{j}\right)+\sum_{j=1}^{n} f\left(\frac{x_{n+j}}{n}\right)\right\| \leq\left\|k f\left(\frac{\sum_{j=1}^{n} x_{j}}{k}+\frac{\sum_{j=1}^{n} x_{n+j}}{n \cdot k}\right)\right\|,|n|>|k| \tag{1.5}
\end{equation*}
$$

Next

$$
\begin{align*}
& \left\|f\left(x_{1}+x_{2}+\ldots+x_{n}\right)-f\left(x_{1}\right)-f\left(x_{2}+\ldots+x_{n}\right)\right\|_{\mathrm{Y}} \\
& \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\ldots+x_{n}\right)-f\left(x_{1}-x_{2}-\ldots-x_{n}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathrm{Y}} \\
& +\left\|\beta_{2}\left(2 f\left(\frac{x_{1}+x_{2}+\ldots+x_{n}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\ldots+x_{n}\right)\right)\right\|_{\mathrm{Y}} \tag{1.6}
\end{align*}
$$

Next

$$
\begin{equation*}
\left\|\sum_{j=1}^{k} f\left(x_{j}\right)+\sum_{j=1}^{k} f\left(y_{j}\right)+\sum_{j=1}^{k} f\left(z_{j}\right)\right\|_{\mathbf{Y}} \leq\left\|2 k f\left(\frac{\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}}{2 k}\right)\right\|_{\mathbf{Y}}, \tag{1.7}
\end{equation*}
$$

And

$$
\begin{equation*}
\left\|\sum_{j=1}^{k} f\left(x_{j}\right)+\sum_{j=1}^{k} f\left(y_{j}\right)+\sum_{j=1}^{k} f\left(z_{j}\right)\right\|_{\mathbf{Y}} \leq\left\|f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)\right\|_{\mathbf{Y}} \tag{1.8}
\end{equation*}
$$

And

$$
\begin{equation*}
\left\|\sum_{j=1}^{k} f\left(x_{j}\right)+\sum_{j=1}^{k} f\left(y_{j}\right)+2 k \sum_{j=1}^{k} f\left(z_{j}\right)\right\|_{\mathbf{Y}} \leq\left\|2 k f\left(\frac{\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)\right\|_{\mathbf{Y}} . \tag{1.9}
\end{equation*}
$$

Final

$$
\begin{equation*}
f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)-2 \sum_{j=1}^{k} f\left(x_{j}\right)-2 \sum_{j=1}^{k} f\left(y_{j}\right)=0 \tag{1.10}
\end{equation*}
$$

And

$$
\begin{equation*}
f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-f\left(\sum_{j=1}^{k} x_{j}-\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)-2 \sum_{j=1}^{k} f\left(y_{j}\right)-2 \sum_{j=1}^{k} f\left(z_{j}\right)=0 \tag{1.11}
\end{equation*}
$$

in Non-Archimedean Banach spaces and on the complex Banach space. When proving the additive function inequalities and the additive function equations on the complex Banach space, I continue to study the above additive $\left(\lambda_{1}, \lambda_{2}\right)$ function inequality on the (α_{1}, α_{2})-homogeneous F -spaces. i.e., the a-functional inequalities with 3 k -variables. Under suitable assumptions on spaces \mathbf{X} and \mathbf{Y}
, we will prove that the mappings satisfying the $\left(\lambda_{1}, \lambda_{2}\right)$-functional inequatilies (1.1) or (1.2). Thus, the results in this paper are generalization of those in [7] [9] [17] [25] [26] [27] for a-functional inequatilies with 3 k -variables. The paper is organized as followns: In section preliminarier we remind a basic property such as We only redefine the solu- tion definition of the equation of the additive function. In this paper, I construct the additive Jensen (λ_{1}, λ_{2})-function inequality on the (α_{1}, α_{2})-homogeneous F-spaces with an unlimited number of variables to facilitate the construction of functional equations on the infinite-dimensional space. The method is that I rely on the ideas of mathematicians around the world See ([1]-[28]). This is a bright horizon for the function inequality. The paper is organized as followns: In section preliminarier we remind a basic property such as We only redefine the solution definition of the equation of the additive function and F^{*}-space .

Section 3: Establishing the solution for (1.1) in (α_{1}, α_{2})-homogeneous F-spaces.
Section 4: Establishing the solution for (1.2) in (α_{1}, α_{2})-homogeneous F-spaces.

2. Preliminarier

1. F^{*}-spaces.

Definition 2.1.

Let \mathbf{X} be a complex linear space. A nonnegative valued function $\|\cdot\|$ is an F-norm if it satisfies the following conditions:
(1) $\|x\|=0$ if and only if $x=0$;
(2) $\|\lambda x\|=\|x\|$ for all $x \in X$ and all λ with $|\lambda|=1$;
(3) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$;
(4) $\left\|\lambda_{n} x\right\| \rightarrow 0, \lambda_{n} \rightarrow 0$;
(5) $\left\|\lambda x_{n}\right\| \rightarrow 0, x_{n} \rightarrow 0$.
(6) $\left\|\lambda_{n} x_{n}\right\| \rightarrow 0, \lambda_{n} \rightarrow 0, x_{n} \rightarrow 0$.
geneous $(\beta>0)$ if $\|t x\|=|t|^{\beta}\|x\|$ for all $x \in \mathbf{X}$ and for all $t \in \mathrm{C}$ and $\quad(\mathrm{X},\|\cdot\|)$ is called α-homogeneous F-space
2.2 Solutions of the inequalities. The functional equation

$$
f(x+y)=f(x)+f(y)
$$

is called the cauchuy equation. In particular, every solution of the cauchuy equation is said to be an additive mapping.

3. ESTABLISHING THE SOLUTION FOR (1.1) IN $\left(\alpha_{1}, \alpha_{2}\right)$-HOMOGENEOUS \boldsymbol{F}-SPACES

3.1. Condition for existence of solutions for Equation (1.1). Here pay attention that \mathbf{X} is a α_{1}-homogeneous F spaces and that \mathbf{Y} is a α_{2}-homogeneous F-spaces.

Lemma 3.1. If a mapping $f: \mathbf{X} \rightarrow \mathbf{Y}$ sattisfies

$$
\begin{align*}
& \left\|f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)-2 \sum_{j=1}^{k} f\left(x_{j}\right)-2 \sum_{j=1}^{k} f\left(y_{j}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\lambda_{1}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\|_{\mathbf{Y}} \\
& +\left\|\lambda_{2}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(y_{j}\right)+\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\|_{\mathbf{Y}} \tag{3.1}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, then $f: \mathbf{X} \rightarrow \mathbf{Y}$ is additive
Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (3.1).
We replacing $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{k}}\right)$ by $(0, \ldots, 0,0, \ldots, 0,0, \ldots, 0)$ in (3.1), we have

$$
\|(4 k-2) f(0)\| \leq\left\|\lambda_{1}(3 k-1) f(0)\right\|+\left\|\lambda_{2}(k-1) f(0)\right\|
$$

Therefore
So $f(0)=0$
Replacing ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{k}}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{k}}$) by $(0, \ldots, 0,0,0, \ldots, 0, \mathrm{z}, \ldots, 0)$ we get

$$
\|f(y)+f(-y)\| \leq 0
$$

and so f is an odd mapping. Replacing $\left(\mathrm{x}_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{k}\right)$ by $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, 0, \ldots, 0, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{k}}\right)$ in (3.1), we have

$$
\begin{align*}
& \left\|f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)\right\| \\
& \leq\left\|\lambda_{1}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\| \\
& +\left\|\lambda_{2}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\| \tag{3.2}
\end{align*}
$$

And so

$$
\begin{equation*}
\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)\left\|f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)\right\| \leq 0 \tag{3.3}
\end{equation*}
$$

And so

$$
f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} z_{j}\right)=\sum_{j=1}^{k} f\left(x_{j}\right)+\sum_{j=1}^{k} f\left(z_{j}\right)
$$

for all $x_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow k$, as we expected.
3.2. Constructing a solution for (1.1). Now, we first study the solutions of (1.1). Note that for these inequalities, when \mathbf{X} is a α_{1}-homogeneous F-spaces and that \mathbf{Y} is a α_{2}-homogeneous F-spaces. Under this setting, we can show that the mapping satisfying (1.1) is additive. These results are give in the following.
Theorem 3.2. suppose $r>\frac{\alpha_{2}}{\alpha_{1}}, \theta$ be nonngative real number, and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that

$$
\begin{align*}
& \left\|f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\sum_{j=1}^{k} f\left(x_{j}-y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-2 \sum_{j=1}^{k} f\left(x_{j}\right)\right\| \\
& \leq\left\|\lambda_{1}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\| \\
& +\left\|\lambda_{2}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\| \\
& +\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right) \tag{3.4}
\end{align*}
$$

for all $\mathrm{xj}, \mathrm{yj}, \mathrm{zj} \in \mathrm{X}$ for all $\mathrm{j}=1 \rightarrow \mathrm{n}$. Then there exists a unique mapping $\psi: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{equation*}
\|f(x)-\psi(x)\| \leq \frac{2 k}{\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)\left((2 k)^{\alpha_{1} r}-(2 k)^{\alpha_{2}}\right)} \theta\|x\|^{r} \tag{3.5}
\end{equation*}
$$

for all $x \in \mathrm{x}$
for all x or all $\mathrm{x} \in \mathrm{X}$ Proof. Assume that $f: \mathrm{X} \rightarrow \mathrm{Y}$ satisfies (3.4).
Replacing ($\left.\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{k}}\right)$ by $(0, \ldots, 0,0, \ldots, 0,0, \ldots, 0)$ in (3.4), we have So $f(0)=0$

Next we replacing $\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{k}\right)$ by $(x, \ldots, x, 0, \ldots, 0, x, \ldots, x)$ in (3.4), we get

$$
\begin{equation*}
\|f(2 k x)-2 k f(x)\| \leq \frac{2 k \theta}{\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)}\|x\|^{r} \tag{3.6}
\end{equation*}
$$

for all $x \in X$. Thus

$$
\begin{equation*}
\left\|f(x)-2 k f\left(\frac{x}{2 k}\right)\right\| \leq \frac{2 k \theta}{|2 k|^{\alpha_{1} r}\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)}\|x\|^{r} \tag{3.7}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{align*}
\left\|(2 k)^{l} f\left(\frac{x}{(2 k)^{l}}\right)-(2 k)^{p} f\left(\frac{x}{(2 k)^{p}}\right)\right\| & \leq \sum_{j=l}^{p-1}\left\|(2 k)^{j} f\left(\frac{x}{(2 k)^{j}}\right)-(2 k)^{j+1} f\left(\frac{x}{(2 k)^{j+1}}\right)\right\| \\
& \leq \frac{2 k \theta}{|2 k|^{\alpha_{1} r}\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)} \sum_{j=l}^{p-1} \frac{(2 k)^{\alpha_{2 j} j}}{(2 k)^{\alpha_{1} j} j}\|x\|^{r} \tag{3.8}
\end{align*}
$$

for all nonneg ative in tegers $\} \mathrm{p}, l$ with $p>l$ and all $x \in \mathbf{X}$. It follows from (3.8) that

the sequence $\left\{(2 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)\right\}$ coverges. So one can define the mapping $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ by
$\phi(x):=\lim _{n \rightarrow \infty}(2 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)$ for all $\mathrm{x} \in \mathrm{X}$. Moreover, letting $1=0$ and passing the limit $\mathrm{m} \rightarrow \infty$ in (3.8), we get (3.5). It follows from (3.4) that

$$
\begin{aligned}
& \left\|\psi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\sum_{j=1}^{k} \psi\left(x_{j}-y_{j}\right)-\sum_{j=1}^{k} \psi\left(z_{j}\right)-2 \sum_{j=1}^{k} \psi\left(x_{j}\right)\right\| \\
& =\lim _{n \rightarrow \infty}(2 k)^{\alpha_{2} n} \| f\left(\frac{1}{(2 k)^{n}}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)\right)+\sum_{j=1}^{k} f\left(\frac{x_{j}-y_{j}}{(2 k)^{n}}\right)-\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} x_{j}\right) \| \\
& \leq \lim _{n \rightarrow \infty}\left(\| \lambda_{1}\left(f\left(\frac{1}{(2 k)^{n}}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)\right)-\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} x_{j}\right)-\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} y_{j}\right)\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left\|\lambda_{2}\left(f\left(\frac{1}{(2 k)^{n}}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{(2 k)^{n}}\right)-\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} z_{j}\right)\right)\right\|\right) \\
& +\lim _{n \rightarrow \infty} \frac{|2 k|^{\alpha_{2} n}}{|2 k|^{\alpha_{1+1}+r}} \theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right) \\
& =\left\|\lambda_{1}\left(\psi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \psi\left(x_{j}\right)-\sum_{j=1}^{k} \psi\left(y_{j}\right)-\sum_{j=1}^{k} \psi\left(z_{j}\right)\right)\right\| \\
& +\left\|\lambda_{2}\left(\psi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \psi\left(x_{j}+y_{j}\right)-\sum_{j=1}^{k} \psi\left(z_{j}\right)\right)\right\| \tag{3.9}
\end{align*}
$$

for all $\mathrm{x}_{\mathrm{j},} \mathrm{y}_{\mathrm{j}}, \mathrm{z}_{\mathrm{j}} \in \mathrm{X}$ for all $\mathrm{j}=1 \rightarrow \mathrm{n}$. Hence

$$
\begin{align*}
& \left\|\psi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\sum_{j=1}^{k} \psi\left(x_{j}-y_{j}\right)-\sum_{j=1}^{k} \psi\left(z_{j}\right)-2 \sum_{j=1}^{k} \psi\left(x_{j}\right)\right\| \\
& \leq\left\|\lambda_{1}\left(\psi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \psi\left(x_{j}\right)-\sum_{j=1}^{k} \psi\left(y_{j}\right)-\sum_{j=1}^{k} \psi\left(z_{j}\right)\right)\right\| \\
& +\left\|\lambda_{2}\left(\psi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \psi\left(x_{j}+y_{j}\right)-\sum_{j=1}^{k} \psi\left(z_{j}\right)\right)\right\| \tag{3.10}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. So by lemma 3.1 it follows that the mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ is additive. Now we need to prove unic

$$
\begin{align*}
\left\|\psi(x)-\phi^{\prime}(x)\right\| & =(2 k)^{\alpha_{2} n}\left\|\psi\left(\frac{x}{(2 k)^{n}}\right)-\phi^{\prime}\left(\frac{\bar{x}}{(2 k)^{n}}\right)\right\| \\
& \leq(2 k)^{\alpha_{2} n}\left(\left\|\psi\left(\frac{x}{(2 k)^{n}}\right)-f\left(\frac{x}{(2 k)^{n}}\right)\right\|+\left\|\phi^{\prime}\left(\frac{x}{(2 k)^{n}}\right)-f\left(\frac{x}{(2 k)^{n}}\right)\right\|\right) \\
& \leq \frac{4 k \cdot(2 k)^{\alpha_{2} n}}{\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)(2 k)^{\alpha_{1} n r}\left((2 k)^{\alpha_{1} r}-(2 k)^{\alpha_{2}}\right)} \theta\|x\|^{r} \tag{3.11}
\end{align*}
$$

which tends to zero as $\mathrm{n} \rightarrow \infty$ for all $\mathrm{x} \in \mathrm{X}$. So, we can conclude that $\psi(x)=\varphi(x)$ for all $x \in \mathrm{X}$. This proves thus the mapping $\psi: \mathrm{X} \rightarrow \mathrm{Y}$ is a unique mapping satisfying (3.5) as we expected.

Theorem 3.3. suppose $r<\frac{\alpha_{2}}{\alpha_{1}}$, $\theta_{\text {be nonngative real number, and let } f: \mathbf{X} \rightarrow \mathbf{Y} \text { be a mapping such that }}$

$$
\begin{align*}
& \left\|f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\sum_{j=1}^{k} f\left(x_{j}-y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-2 \sum_{j=1}^{k} f\left(x_{j}\right)\right\| \\
& \leq\left\|\lambda_{1}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\| \\
& \quad+\left\|\lambda_{2}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\| \\
& \quad+\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right) \tag{3.12}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Then there exists a unique mapping $\psi: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-\psi(x)\| \leq \frac{2 k}{\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)\left((2 k)^{\alpha_{2}}-(2 k)^{\alpha_{1} r}\right)} \theta\|x\|^{r} \tag{3.13}
\end{equation*}
$$

for all $x \in \mathbf{X}$
The rest of the proof is similar to the proof of Theorem 3.2.
4. ESTABLISHING THE SOLUTION FOR (1.2) IN (α_{1}, α_{2})-HOMOGENEOUS \boldsymbol{F}-SPACES
4.1. Condition for existence of solutions for Equation (1.2). Here pay attention that \mathbf{X} is a α_{1}-homogeneous F spaces and that \mathbf{Y} is a α_{2}-homogeneous F-spaces.

Lemma 4.1. Let a mapping $f: \mathbf{X} \rightarrow \mathbf{Y}$ satilies

$$
\begin{align*}
& \left\|f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right\| \\
& \leq\left\|\lambda_{1}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\sum_{j=1}^{k} f\left(x_{j}-y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-2 \sum_{j=1}^{k} f\left(x_{j}\right)\right)\right\| \\
& +\left\|\lambda_{2}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\| \tag{4.1}
\end{align*}
$$

We replacing $\left(x_{1}, \ldots, x_{k}, y_{l}, \ldots, y_{k}, z_{l}, \ldots, z_{k}\right)$ by $(0, \ldots, 0,0, \ldots, 0,0, \ldots, 0)$ in (4.1), we have

$$
\|(3 k-1) f(0)\| \leq\left\|\lambda_{1}(2 k-1) f(0)\right\|+\left\|\lambda_{2}(2 k-1) f(0)\right\|
$$

Therefore

$$
\left(|3 k-1|^{\beta_{2}}-\left|\lambda_{1}(2 k-1)\right|^{\beta_{2}}-\left|\lambda_{2}(2 k-1)\right|^{\beta_{2}}\right)\|f(0)\| \leq 0
$$

So $f(0)=0$.
Replacing ($\mathrm{x}_{1} \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{k}}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{k}}$) by $(0, \ldots, 0,-\mathrm{y}, 0, \ldots, 0,0, \ldots, 0)$, in (4.1),
we get

$$
\|f(-y)-f(-y)\|-\left|\lambda_{1}\right|\|f(-y)+f(y)\|-\left|\lambda_{2}\right|\|f(-y)-f(-y)\| \leq 0
$$

and so f is an odd mapping.
Replacing $\left(x_{1}, \ldots, x_{k}, y_{l}, \ldots, y_{k}, z_{l}, \ldots, z_{k}\right)$ by $\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0, z_{1}, \ldots, z_{k}\right)$ in (4.1) we have

$$
\begin{align*}
& \left\|f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)\right\| \\
& \leq\left\|\lambda_{1}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\| \\
& +\left\|\lambda_{2}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\| \tag{4.2}
\end{align*}
$$

And so

$$
\begin{equation*}
\left(1-\left|\lambda_{1}\right|^{\beta_{2}}-\left|\lambda_{2}\right|^{\beta_{2}}\right)\left\|f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)\right\| \leq 0 \tag{4.3}
\end{equation*}
$$

And so

$$
f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} z_{j}\right)=\sum_{j=1}^{k} f\left(x_{j}\right)+\sum_{j=1}^{k} f\left(z_{j}\right)
$$

for all $x_{j}, z_{j} \in X$ for $j=1 \rightarrow k$, as we expected.
4.2. Constructing a solution for (1.2). Now, we first study the solutions of (1.2). Note that for these inequalities, when \mathbf{X} is a α_{1}-homogeneous F-spaces and that \mathbf{Y} is a α_{2}-homogeneous F-spaces. Under this setting, we can show that the mapping satisfying (1.2) is additive. These results are give in the following.

Theorem 4.2. suppose ${ }^{r>} \frac{\alpha_{2}}{\alpha_{1}}$, $\theta_{\text {be nonngative real number, and let } f: \mathbf{X} \rightarrow \mathbf{Y} \text { be a mapping such that }}$

$$
\begin{align*}
\| f & \left.f \sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right) \| \\
\leq & \left\|\lambda_{1}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\sum_{j=1}^{k} f\left(x_{j}-y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-2 \sum_{j=1}^{k} f\left(x_{j}\right)\right)\right\| \\
& +\left\|\lambda_{2}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\| \\
& +\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right) \tag{4.4}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $\mathrm{j}=1 \rightarrow \mathrm{n}$. Then there exists a unique mapping $\psi: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{equation*}
\|f(x)-\psi(x)\| \leq \frac{2 k}{\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)\left((2 k)^{\alpha_{1} r}-(2 k)^{\alpha_{2}}\right)} \theta\|x\|^{r} \tag{4.5}
\end{equation*}
$$

for all $x \in X$
Proof. Assume that $f: \mathrm{X} \rightarrow \mathrm{Y}$ satisfies (4.4).
Replacing $\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{k}\right)$ by $(0, ., 0,0, \ldots, 0,0, ., 0)$ in (4.4),we have
So $f(0)=0$.

Next we replacing ($\mathrm{x} 1, \ldots, \mathrm{xk}, \mathrm{y} 1, \ldots, \mathrm{yk}, \mathrm{z} 1, \ldots, \mathrm{zk}$) by ($\mathrm{x}, \ldots, \mathrm{x}, 0, \ldots, 0, \mathrm{x}, \ldots, \mathrm{x}$) in (4.4), we get

$$
\begin{equation*}
\|f(2 k x)-2 k f(x)\| \leq \frac{2 k \theta}{\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)}\|x\|^{r} \tag{4.6}
\end{equation*}
$$

for all $x \in \mathrm{X}$. Thus

$$
\begin{equation*}
\left\|f(x)-2 k f\left(\frac{x}{2 k}\right)\right\| \leq \frac{2 k \theta}{|2 k|^{\alpha_{1} r}\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)}\|x\|^{r} \tag{4.7}
\end{equation*}
$$

for all $x \in \mathrm{X}$. So

$$
\begin{align*}
\left\|(2 k)^{l} f\left(\frac{x}{(2 k)^{l}}\right)-(2 k)^{p} f\left(\frac{x}{(2 k)^{p}}\right)\right\| & \leq \sum_{j=l}^{p-1}\left\|(2 k)^{j} f\left(\frac{x}{(2 k)^{j}}\right)-(2 k)^{j+1} f\left(\frac{x}{(2 k)^{j+1}}\right)\right\| \\
& \leq \frac{2 k \theta}{|2 k|^{\alpha_{1} r}\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)} \sum_{j=l}^{p-1} \frac{(2 k)^{\alpha_{2} j}}{(2 k)^{\alpha_{1} r j}}\|x\|^{r} \tag{4.8}
\end{align*}
$$

for all nonnegative integers p, l with $\mathrm{p}>1$ and all $\mathrm{x} \in \mathrm{X}$. It follows from (4.8) that

the sequence $\left\{(2 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)\right\}$ coverges. So one can define the mapping $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ by
$\phi(x):=\lim _{n \rightarrow \infty}(2 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)$ for all $\mathrm{x} \in \mathrm{X}$. Moreover, letting $\mathrm{l}=0$ and passing the limit $\mathrm{m} \rightarrow \infty$ in (4.8), we get (4.5). It follows from (4.4) that

$$
\begin{align*}
& \left\|\psi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \psi\left(x_{j}\right)-\sum_{j=1}^{k} \psi\left(y_{j}\right)-\sum_{j=1}^{k} \psi\left(z_{j}\right)\right\| \\
& =\lim _{n \rightarrow \infty}(2 k)^{\alpha_{2} n} \| f\left(\frac{1}{(2 k)^{n}}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}}{(2 k)^{n}}\right)-\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} y_{j}\right) \\
& -\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} z_{j}\right) \| \\
& \leq \lim _{n \rightarrow \infty}\left(\| \lambda_{1}\left(f\left(\frac{1}{(2 k)^{n}}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)\right)+\sum_{j=1}^{k} f\left(\frac{x_{j}-y_{j}}{(2 k)^{n}}\right)-\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} z_{j}\right)\right.\right. \\
& \left.-2 \sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} x_{j}\right)\right) \| \\
& \left.+\left\|\lambda_{2}\left(f\left(\frac{1}{(2 k)^{n}}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)\right)-\sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{(2 k)^{n}}\right)-\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} z_{j}\right)\right)\right\|\right) \\
& \quad+\lim _{n \rightarrow \infty} \frac{|2 k|^{\alpha_{2} n}}{|2 k|^{n \alpha_{1} r}} \theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right) \\
& \quad=\left\|\lambda_{1}\left(\psi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\sum_{j=1}^{k} \psi\left(x_{j}-y_{j}\right)-\sum_{j=1}^{k} \psi\left(z_{j}\right)-2 \sum_{j=1}^{k} \psi\left(x_{j}\right)\right)\right\| \\
& \quad+\left\|\lambda_{2}\left(\psi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \psi\left(x_{j}+y_{j}\right)-\sum_{j=1}^{k} \psi\left(z_{j}\right)\right)\right\| \tag{4.9}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Hence

$$
\begin{align*}
& \left\|\psi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \psi\left(x_{j}\right)-\sum_{j=1}^{k} \psi\left(y_{j}\right)-\sum_{j=1}^{k} \psi\left(z_{j}\right)\right\| \\
& \leq\left\|\lambda_{1}\left(\psi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\sum_{j=1}^{k} \psi\left(x_{j}-y_{j}\right)-\sum_{j=1}^{k} \psi\left(z_{j}\right)-2 \sum_{j=1}^{k} \psi\left(x_{j}\right)\right)\right\| \\
& +\left\|\lambda_{2}\left(\psi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} \psi\left(x_{j}+y_{j}\right)-\sum_{j=1}^{k} \psi\left(z_{j}\right)\right)\right\| \tag{4.10}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. So by lemma 4.1 it follows that the mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ is additive. Now we need to prove uniqueness, suppose $\varphi^{\mathrm{J}} \mathbf{X} \rightarrow \mathbf{Y}$ is also an additive mapping that satisfies (4.5). Then we have

$$
\begin{align*}
\left\|\psi(x)-\phi^{\prime}(x)\right\| & =(2 k)^{\alpha_{2} n}\left\|\psi\left(\frac{x}{(2 k)^{n}}\right)-\phi^{\prime}\left(\frac{x}{(2 k)^{n}}\right)\right\| \\
& \leq(2 k)^{\alpha_{2} n}\left(\left\|\psi\left(\frac{x}{(2 k)^{n}}\right)-f\left(\frac{x}{(2 k)^{n}}\right)\right\|+\left\|\phi^{\prime}\left(\frac{x}{(2 k)^{n}}\right)-f\left(\frac{x}{(2 k)^{n}}\right)\right\|\right) \\
& \leq \frac{4 k \cdot(2 k)^{\alpha_{2} n}}{\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)(2 k)^{\alpha_{1} n r}\left((2 k)^{\alpha_{1} r}-(2 k)^{\alpha_{2}}\right)} \theta\|x\|^{r} \tag{4.11}
\end{align*}
$$

Theorem 4.3. suppose $r<\frac{\alpha_{2}}{\alpha_{1}}$, $\theta_{\text {be nonngative real number, and let } f: \mathbf{X} \rightarrow \mathbf{Y} \text { be a mapping such that }}$

$$
\begin{align*}
& \left\|f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}\right)-\sum_{j=1}^{k} f\left(y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right\| \\
& \leq\left\|\lambda_{1}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\sum_{j=1}^{k} f\left(x_{j}-y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-2 \sum_{j=1}^{k} f\left(x_{j}\right)\right)\right\| \\
& +\left\|\lambda_{2}\left(f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)\right)\right\| \\
& +\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right) \tag{4.12}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $\mathrm{j}=1 \rightarrow \mathrm{n}$. Then there exists a unique mapping $\psi: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{equation*}
\|f(x)-\psi(x)\| \leq \frac{2 k}{\left(1-\left|\lambda_{1}\right|^{\alpha_{2}}-\left|\lambda_{2}\right|^{\alpha_{2}}\right)\left((2 k)^{\alpha_{2}}-(2 k)^{\alpha_{1} r}\right)} \theta\|x\|^{r} \tag{4.13}
\end{equation*}
$$

for all $x \in X$
The rest of the proof is similar to the proof of Theorem 4.2.

5. CONCLUSION

The result in this paper is that I have built the Jensen's additive (λ_{1}, λ_{2}) -function inequality with 3 k -variables over (α_{1}, α_{2})-homogeneous F spaces and I show the existence of n solutions for them.

References

[1]. ULam, S.M. (1960) A Collection of Mathematical Problems. Vol. 8, Interscience Publishers, New York.
[2]. Hyers, D.H. (1941) On the Stability of the Functional Equation. Proceedings of the National Academy of the United States of America, 27, 222-224. https://doi.org/10.1073/pnas.27.4.222.
[3]. Aoki, T. (1950) On the Stability of the Linear Transformation in Banach Space. Journal of the Mathematical Society of Japan, 2, 64-66. https://doi.org/10.2969/jmsj/00210064.
[4]. Rassias, T.M. (1978) On the Stability of the Linear Mapping in Banach Space. Proceedings of the American Mathematical Society, 27, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1.
[5]. G $a^{\breve{ }}$ vruta, P. (1994) A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings. Journal of Mathematical Analysis and Applications, 184, 431-436. https://doi.org/10.1006/jmaa. 1994
geman
publication
. 1211.
[6]. Gila'nyi, A. (2002) On a Problem by K. Nikodem. Mathematical Inequalities Applications, 5, 707-710.
[7]. Prager, W. and Schwaiger, J. (2013) A System of Two In homogeneous Linear Functional Equations. Acta Mathematica Hungarica, 140, 377-406. https://doi.org/10.1007/s10474-013-0315-y.
[8]. Fechner, W. (2006) Stability of a Functional Inequlities Associated with the Jordan-Von Neumann Functional Equation. Aequationes Mathematicae, 71, 149-161. https://doi.org/10.1007/s00010-005- 2775-9.
[9]. Park, C. (2014) Additive β-Functional Inequalities. Journal of Nonlinear Sciences and Applications, 7, 296-310. https://doi.org/10.22436/jnsa.007.05.02
[10]. Park, C. (2015) Additive η-Functional Inequalities and Equations. Journal of Mathematical Inequal- ities, 9, 17-26.
[11]. Park, C. (2015) Additive β-Functional Inequalities in Non-Archimedean Normed Spaces. Journal of Mathematical Inequalities, 9, 397-407.
[12]. Skof, F. (1983) Propriet locali e approssimazione di operatori. Rendiconti del Seminario Matematico e Fisico di Milano, 53, 113-129. https://doi.org/10.1007/BF02924890
[13]. Fechner, W. (2010) On Some Functional Inequalities Related to the Logarithmic Mean. Acta Math- ematica Hungarica, 128, 36-45. https://doi.org/10.1007/s10474-010-9153-3
[14]. Cadariu, L. and Radu, V. (2003) Fixed Points and the Stability of Jensens Functional Equation. Journal of Inequalities in Pure and Applied Mathematics, 4, Article No. 4.
[15]. Diaz, J. and Margolis, B. (1968) A Fixed-Point Theorem of the Alternative for Contractions on a Generalized Complete Metric Space. Bulletin of the American Mathematical Society, 74, 305-309. https://doi.org/10.1090/ S0002-9904-1968-11933-0
[16]. [16] Lee, J.R., Park, C. and Shin, D.Y. (2014) Additive and Quadratic Functional in Equalities in NonArchimedean Normed Spaces. International Journal of Mathematical Analysis, 8, 1233-1247. https://doi.org/10.12988/ijma.2014.44113
[17]. Yun, S. and Shin, D.Y. (2017) Stability of an Additive (p1,p2)-Functional Inequality in Banach Spaces. The Pure and Applied Mathematics, 24, 21-31. https://doi.org/10.7468/jksmeb.2017.24.1.21
[18]. Mihet, D. and Radu, V. (2008) On the Stability of the Additive Cauchy Functional Equation in Random Normed Spaces. Journal of Mathematical Analysis and Applications, 343, 567-572. https://doi.org/10.1016/j. jmaa.2008.01.100
[19]. Bahyrycz, A. and Piszczek, M. (2014) Hyers Stability of the Jensen Function Equation. Acta Math- ematica Hungarica, 142, 353-365. https://doi.org/10.1007/s10474-013-0347-3
[20]. Balcerowski, M. (2013) On the Functional Equations Related to a Problem of Z Boros and Z. Dr.
[21]. Acta Mathematica Hungarica, 138, 329-340. https://doi.org/10.1007/s10474-012-0278-4
[22]. Qarawani, M. (2012) Hyers-Ulam Stability of a Generalized Second-Order Nonlinear Differ-ential Equation. Applied Mathematics, 3, 1857-1861. https://doi.org/10.4236/am.2012.312252 https://www.scirp.org/ journal/am/
[23]. Park, C., Cho, Y. and Han, M. (2007) Functional Inequalities Associated with Jordan-Von Newman- Type Additive Functional Equations. Journal of Inequalities and Applications, 2007, Article No. 41820. https://doi.org/10.1155/2007/41820
[24]. R, J. (2003) On Inequalities Assosciated with the Jordan-Von Neumann Functional Equation. Ae- quationes Matheaticae, 66, 191-200. https://doi.org/10.1007/s00010-003-2684-8
[25]. Van An, L.Y. (2022) Generalized Hyers-Ulam-Rassisa Stabilityof an Additive (1; 2)-Functional Inequalities with nVariables in Complex Banach. Open Access Library Journal, 9, e9183. https://doi.org/10.4236/oalib. 1109183
[26]. Van An, L.Y. (2019) Hyers-Ulam Stability of Functional Inequalities with Three Variable in Banach Spaces and Non-Archemdean Banach Spaces. International Journal of Mathematical Analysis, 13, 519-537. https://doi.org/10.12988/ijma.2019.9954
[27]. Van An, LY. (2020) Hyers-Ulam Stability of Functional Inequalities with Three Variable in Non- Archemdean Banach Spaces and Complex Banach. International Journal of Mathematical Analysis, 14, 219-239. https://doi.org/10.12988/ijma.2020.91169
[28]. Ly Van An Generalized Stability of Functional Inequalities with 3k-Variables Associ- ated for Jordanvon Neumann-Type Additive Functional Equation Open Access Library Journal.Open Access Library Journal 2023, Volume 10, e9681 ISSN Online: 2333-9721 https://doi.org/10.4236/oalib.1109681 ISSN Print: 2333-9705 Vol. 10 No.1, January 2023

