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Abstract –The objective of heart rate monitoring and 

processing devices is to perform automatic detection of 

cardiac arrhythmias in ECG signal. This work focuses on 

developing a sophisticated, small and reliable ASIC chip that 

can be used for monitoring and detecting the rate of heart 

beat for heart transplantation patient. Noise removal in 

heart rate signal is carried out by well known adaptive noise 

cancellation techniques such as LMS and RLS algorithms. 

In this work, ASIC chip is designed for heart rate 

monitoring and signal processing is done using LMS based 

adaptive algorithm. The proposed architectures have been 

modeled and verified for their functionality. Using the entire 

ASIC flow, suitable results obtained at various stages are 

compared and reported. The high computational 

requirement of all adaptive filtering algorithms has limited 

the scope of its use in medical applications. However, with 

rapid advances in VLSI technology, it is possible to 

implement complex circuits in a single chip. This work 

focuses on developing architectures for adaptive noise 

cancellation and its ASIC implementation. 

Index Terms- Application Specific Integrated Circuit, 

Heart rate variability (HRV), Adaptive filter, 

Electrocardiogram (ECG) 

I. INTRODUCTION 

Portable devices have gained a huge attention recently 
for monitoring critical signals such as electrocardiogram 
(ECG), electroencephalogram (EEG) and electromyogram 
(EMG). Besides biomedical products, there are large 
number of emerging healthcare applications that involve 
sensors and their associated precise instrumentation and 
signal conditioning. Low power, miniaturized and low cost 
monitoring/sensing devices are the key components in 
such systems. The performance of these devices directly 
depends on analog signal conditioning, which must extract 
and amplify extremely small signals from a noisy 
environment. Myopotential spectrum is predominant at 
higher frequencies and significantly overlaps with the 
spectrum of the ECG signal, primarily with the spectrum 
of the QRS complex [1]. Thus, the automatic 
interpretation, following accurate detection of 
characteristic ECG points and waves, and measurement of 
signal parameters, become difficult. EMG noise is caused 
by increased muscle activity. The ECG signal is used to 
know the cardiac condition of an ambulatory patient. 
Wireless Ambulatory ECG recording is now routinely 
used to detect arrhythmias and cardiac abnormalities. As 
the ECG signal contains numerous artifacts, these artifacts 
have to be removed before monitoring, from the receiver 

point-of-view, so that a correct decision can be taken. So, 
it is necessary to remove the different artifacts present in 
the ECG signal hence there is a need of filtering the ECG 
signal. In a practical case most of the signals are 
nonstationary and the filter, which we use must change its 
coefficient according to the input signal. Several filtering 
techniques have been presented in literature for ECG 
analysis, which includes, adaptive and non adaptive 
techniques, adaptive filtering techniques permit to the 
detect time varying potentials and to track the dynamic 
variations of the signals. 

 
Electrical activity of heart can be recorded with surface 

electrodes on chest or limbs. ECG wave shape may be 
altered by cardiovascular diseases, atrial fibrillation, and 
ventricular fibrillation and conduction problems. ECG 
signal comprises of P wave, PG segment, QRS complex, 
ST segment and T wave. QRS complex wave shape is 
affected by conduction disorders. Ventricular enlargement 
could cause a wider than normal QRS complex. The ST 
segment may be depressed due to myocardial infarction. 
Presence of noise is one of the most challenging problems 
in Signal Processing basically due to the fact that a signal 
can pick up noise and be distorted such that the 
information carried by the signal can be misinterpreted. 
Thus, it is important that the impairments due to noise is 
reduced or eliminated totally from signals in almost all 
signal processing and communications tasks. Filtering is 
widely used to remove the noise from the signal. However, 
in the process, it also removes a part of the signal, which 
may be an important part of the signal processing 
application. 

The wavelet transform is an emerging signal 
processing technique that can be used to represent real-life 
non stationary signals with high efficiency [1]. Indeed, the 
wavelet transform is gaining momentum to become an 
alternative tool to traditional time-frequency representation 
techniques such as the discrete Fourier transform and the 
discrete cosine transform. By virtue of its multi-resolution 
representation capability, the wavelet transform has been 
used effectively in vital applications such as transient 
signal analysis [2], numerical analysis [3], computer vision 
[4], and image compression [5], among many other 
audiovisual applications. Wavelet transform is mostly 
needed to be embedded in consumer electronics, and thus 
a single chip hardware implementation is more desirable 
than a multi-chip parallel system implementation. 
However, time-varying autoregressive models allow 
assessing, on a beat to beat basis, the spectral parameters 
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of HRV signal in a fast and efficient way independently on 
the transitory events found through the whole night 
recording (provoked by arousals, body movements, and 
changes on sleep stages or apneas). 

In the last few decades the demand for portable and 
embedded digital signal processing (DSP) systems has 
increased dramatically. Applications such as cell phones, 
hearing aids, and digital audio devices are applications 
with stringent constraints such as area, speed and power 
consumption. These applications require an 
implementation that meets these constraints with the 
shortest time to market. The possible alternative 
implementations that can be used range from an ASIC 
custom chip, general purpose processor (GPP) to DSP 
processors. While the first choice could provide the 
solution that meets all the hard constraints, it lacks the 
flexibility that exists in the other two, and also its design 
cycle is much longer. FPGAs prove particularly useful in 
data path designs, where the regular structure of the array 
can be utilized effectively. The programmability of FPGAs 
adds flexibility not available in custom approaches, while 
retaining relatively high system clock rates. 

II. RELATED WORK AND ISSUES 

The nonlinear filter that uses reversible WT allows 
estimating noise level in individual decomposition bands 
and proportionally adapting correction of WT coefficients. 
In this way, we can achieve effective noise suppression 
while distortion of the ECG signal is minimized. Besides 
the choice of decomposition and reconstruction filter 
banks, the choice of the level of decomposition and the 
strategy of WT coefficient adjustment are also important. 
Different strategies of thresholding the WT coefficients 
with down sampling are discussed in [4]. In [5], the author 
attempts to optimize the threshold parameters for a 
wavelet filter with WT with decimation, and concludes 
that the optimal parameter values depend on the level of 
interference. The disadvantage of filtering with WT with 
down sampling is that the result is dependent on the choice 
of the beginning of the filtering and the need for 
interpolation in reverse transform, which is always a 
source of errors. Transform without down sampling, the so 
called stationary (redundant) wavelet transform (SWT), is 
more preferable for filtering. Thresholding using SWT is 
solved in [6]. Better results can be achieved by using the 
wavelet Wiener filtering, when each transform coefficient 
is adjusted separately. The Wiener filter requires an 
estimate of a noise-free signal, which is necessary to 
calculate the correction factor for the adjustment of 
transform coefficients. The principle of the method was 
described in [7], where the estimate of the noise-free 
signal was performed using another wavelet filter, both 
implemented with decimation. The wavelet Wiener 
filtering (WWF) with decimation and with simplified 
estimation of the noise-free signal was used in [2]. In [8], 
SWT with estimation of the noise-free signal was used. 
The estimation was carried out with WT with decimation 
and hard thresholding. In [9], both the transforms are 
stationary; the estimation of a noise-free signal was carried 

out by nonnegative garrote thresholding. The filters were 
tested on signals with artificial noise, whose power 
spectrum was adapted to the spectrum of an EMG signal. 
The parameters of all the Wiener filters mentioned were 
set intuitively. The authors of all the papers cited used 
dyadic transforms. 

In classical derivative-based QRS detection, ECG 
signal first passes through a set of linear processes, 
including a band-pass filter comprising a cascaded low-
pass and high-pass, and a derivative function. Non-linear 
transformation is then employed in form of a signal 
amplitude squaring function. Finally, moving window 
integration is performed before an adaptive threshold is 
applied for detection of the QRS complexes. The 
underlining principle of the algorithm is the detection of 
the slope of the R wave through the derivative function, 
amplified by the squaring function. The moving-window 
integration then provides wave-form feature information in 
addition to the detected R wave slope. Different from 
conventional method, in our system, as we are only 
interested in the RR interval in HRV analysis, we choose 
to assign an R peak to each detected R slope from the 
output of the squaring function through an adaptive 
threshold. Thus, we only require the band-pass filter, 
derivative function, squaring function, and adaptive 
threshold in our system. After differentiation, squaring 
function is employed to enhance the characteristics of the 
signal. Then a threshold is applied to the squared signal to 
detect the start of the QRS complex. The peak of the 
squared signal is identified as the R peak of the ECG data. 

 

III. ADAPTIVE NOISE CANCELLER 

During digital signal processing, a number of 
unpredictable signals such as noises or time-varying 
signals often need to process, it is impossible to achieve 
optimal filtering for fixed coefficient filter, so adaptive 
noise canceller must be designed to track the change of 
signal and noise. Adaptive noise canceller consists of two 
basic parts: the filter which applies the required processing 
on the incoming signal which is to be filtered, and an 
adaptive algorithm, which adjusts the coefficients of that 
filter to somehow improve its performance. When adaptive 
noise canceller is designed, the autocorrelation function of 
signals and noises cannot be known in advance. During the 
filtering, with the autocorrelation function of signals and 
noises changing slowly over time, filter can automatically 
adapt and adjust to meet the requirements of the minimum 
mean squared error. 
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Figure 1.  Simplified Adaptive Noise Canceller 

Figure 1 shows the structure of adaptive filter. The 
objective is to filter the input signal, x(n), with an adaptive 
filter in such a manner that it matches the desired signal, 
d(n). The desired signal, d(n), is subtracted from the 
filtered signal, y(n), to generate an error signal, e(n). 

The LMS algorithm is a widely used technique for 
adaptive filtering. A significant feature of the LMS 
algorithm is simplicity. In this algorithm filter weights are 
updated with each new sample as required to meet the 
desired output. The computation required for weights 
update is illustrated by equation. If the input values x(n), 
x(n-1), x(n-2)……… x(n-N+1) form the tap input vector 
x(n) where N denotes the filter length, and the weights w 
(n),w1(n),w2(n) ……. form the tap weight vector w(n), 
then the LMS algorithm is given by the following 
equations: 

y(n) = wHr(n) u(n) 
e(n) = d(n) - y(n) 

     w(n + 1) = w(n) + μ u(n)e(n) 
y(n) denotes the filter output, d(n) denotes the desired 

output, e(n) denotes the filter error (the difference between 
the desired filter output and current filter output) which is 
used to update the TAP weights, μ denotes a learning rate, 
and bw(n+1) denotes the new weight vector that will be 
used by the next iteration. A computationally simpler 
version of the gradient search method is the least mean 
square (LMS) filter, in which the gradient of the mean 
square error is substituted with the gradient of the 
instantaneous squared error function. Figure 2 depicts the 
implementation of LMS equation using basic blocks 

 
Figure 2.  LMS Equation Implementation 

A normal FIR filter based on MAC operations could be 
used to implement this algorithm. A weight update 
mechanism should be added to the FIR filter to update the 

filter weights according to the calculated error. This 
module requires extra multiplications and additions. 

 
Figure 3.  FIR-LMS Filter Structure 

The filter outputs obtained from the FIR block are used 
by the LMS algorithm to calculate the changes to the filter 
coefficients, required for the next filtering process. When 
echo data is received from the link it is buffered and upon 
subtraction from the filter output values, the error term 
e(n) is obtained. This is used for obtaining the Δh values to 
be added/subtracted from the current filter coefficients. 
Once the new coefficients are available, an h available flag 
is asserted informing the FIR block that the new 
coefficients are available for the next filtering process to 
initiate. This process is repeated until the error term fed 
into the system is negligible. The most critical part in the 
design of the LMS block is the learning factor whose 
optimum value had to be found by trial and error within 
the bounds specified by the algorithm. The learning factor 
determines how fast the algorithm converges. Setting a 
learning factor that is too large results in the output 
oscillating due to overshoot, hence convergence is never 
reached. On the other hand, if the learning factor is too 
small slow convergence speeds will result, hence 
increasing the risk of overflow in the input buffers. 

 

The Least Mean Square (LMS) algorithm was first 

developed by Widrow and Hoff. It has become one of the 

most widely used algorithms in adaptive filtering. The 

LMS algorithm is a type of adaptive filter known as 

stochastic gradient-based algorithms as it utilizes the 

gradient vector of the filter tap weights to converge on the 

optimal wiener solution (Mahesh Godavarti 2005). It is 

well known and widely used due to its computational 

simplicity. It is this simplicity that has made it the 

benchmark against which all other adaptive filtering 

algorithms are judged as said by Sinead Mullins and 

Conor Heneghan (2002). 

IV. EXPERIMENTAL RESULTS 

The ECG signals used in our testing are from the 
standard physionet database. This database consists of two 
sets of 125 realistic 12-lead and 3-lead (orthogonal) ECG 
signals. Electrocardiograms have a length of 10 s and were 
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sampled at 500 Hz sampling frequency with a quantization 
step of 5 μV. The signals contain interference, whose SNR 
is between 0 and 50 dB, although some segments of the 
signals can contain noise ranging from −5 to 55 dB. The 
artificial noise used for testing was generated individually 
for each signal, respecting the original noise level and its 
time dependence. If we filter the whole database using our 
proposed technique, the SNR increases for all signals. 

 

Figure 4.  Denoised ECG Signal Using Adaptive Filter 

To enable practical employment of ever-present 
healthcare devices for portable medical applications, an 
experimental ECG system-on-chip prototype has been 
developed. Here we describe the architecture of the 
proposed ECG SOC as well as the means of system 
verification including a Xilinx FPGA, which are connected 
to the ARM processor through an AMBA High-
performance Bus (AHB). The designed HRV processer is 
implemented on the FPGA and verified with patterns sent 
from a PC. In-circuit emulator (ICE) is employed to feed 
ECG patterns into the ARM processor which then passed 
the data to the FPGA on the AHB bus. To connect the 
HRV processor on the FPGA to the AHB bus, an AHB 
wrapper is added to the original architecture, which 
provides a handshaking interface between the HRV 
processor and the AHB bus. The UART module is also 
implemented so that the capability to communicate with 
the Bluetooth module using a system clock of 24 MHz 
could be verified. The Modelsim simulation for FPGA 
verification is shown in Figure 5 and layout is given in 
Figure 6. Tests using the Socle Development Platform 
have verified that the HRV processor is capable of 
calculating time–frequency analysis in real-time and is 
possible to implement using VLSI technology. 

 

Figure 5.  HDL Simulation Output 

 

 

Figure 6.  Layout of the designed chip 

V. CONCLUSION 

 In this work, ASIC chip is designed for heart rate 

monitoring and signal processing is done using LMS 

based adaptive algorithm. The high computational 

requirement of all adaptive filtering algorithms has 

limited the scope of its use in medical applications. 

However, with rapid advances in VLSI technology, it is 

possible to implement complex circuits in a single chip. 

Heart rate monitoring and processing chip is developed 

and the simulation and implementation results are 

obtained.  
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