

APPLICATION OF WATERMARKING TO SOFTWARE PIRACY

Ekene Frank Ozioko

Department of Computer and Information Science, Enugu State University of Science and Technology,

Enugu.(ekene.ozioko@esut.edu.ng)

ABSTRACT

Within the software industry software piracy is a great concern. In this article we

address this issue through a prevention technique called software watermarking.

Depending on how a software watermark is applied it can be used to discourage

piracy; as proof of authorship or purchase; or to track the source of the illegal

redistribution. Software watermarks, which can be used to identify the intellectual

property owner of a piece software, are broadly divided into two categories: static and

dynamic. Static watermarks are embedded in the code and/or data of a computer

program, whereas dynamic watermarking techniques store a watermark in a

program’s execution state. In particular we analyze an algorithm originally proposed

by Genevie`ve Arboitin. A Method for Watermarking Java Programs via Opaque

Predicates. This watermarking technique embeds the watermark by adding opaque

predicates to the application.We have found that the Arboit technique does withstand

some forms of attack and has a respectable data-rate. However, it is susceptible to a

variety of distortive attacks.One unanswered question in the area of software

watermarking is whether dynamic algorithms are inherently more resilient to attacks

than static algorithms. We have implemented and empirically evaluated both static

and dynamic versions within

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 52

INTRODUCTION

The global revenue loss due to software piracy was estimated to be more than $50

billion in 2009. Software companies regularly use legal methods such as copyright

laws, patents and license agreements and ethical arguments such as fair

compensation for producers. However, these methods do not always dissuade people

from stealing software, especially in emerging markets where the price of software is

high and incomes are low.

Software watermarking is just one of many techniques that is currently being studied

to prevent or discourage software piracy and copyright infringement. The idea is

similar to media watermarking where a unique identifier is embedded in image, audio,

or video data through the introduction of errors not detectable by human perception.

Due to the nature of software it is not possible to strictly apply the ideas found in

media watermarking. Instead embedding an identifier in a piece of software must be

done in such a way that the original functionality is maintained.

Software watermarking involves embedding a unique identifier within a piece of

software, to discourage software piracy. Watermarking does not prevent copying but

instead discourages software thieves by providing a means to identify the owner of a

piece of software and/or the origin of the stolen software. The hidden watermark can

be recognised or extracted, at a later date, by the use of a recogniseror extractor to

prove ownership of stolen software. It is also possible to embed a unique customer

identifier in each copy of the software distributed which allows the software company

to identify the individual that pirated the software.

Watermarking techniques are used extensively in the entertainment industry to

identify multimedia files such as audio and video files, and the concept has extended

into the software industry.

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 53

Definition 1. (Software watermarking System). Given a program P, a watermark w, and

a key k, a software watermarking system consists of two functions:

embed (P,w,k) →P

recognize (P,k) → w.

There are two general categories of watermarking algorithms,(1) static and (2)dynamic.

A dynamic algorithm relies on information gathered from the execution of the

application to embed and recognize the watermark. Static algorithms only examine the

static code and data

oftheapplication.Avarietyoftechniqueshavebeenproposedforsoftwarewatermarkingbut

there are few publications describing the implementation and evaluation of these

algorithms. There are far more static watermarking algorithms than dynamic due to

the multitude of locations where information can be hidden in an executable. For

example, in a Java classfile a static watermark can be embedded in the constant pool

table, method table, etc.

Davidson and Myhrvold proposed a static watermarking algorithm which embeds the

watermark by reordering the basic blocks of a control flow graph. Venkatesan et al

built on this idea in an algorithm which embeds the watermark by extending a

method’s control flow graph through the insertion of a subgraph. Monden et al

proposed a technique which embeds the watermark in a dummy method through a

specially constructed instruction sequence. Stern et al also consider instruction

sequences for embedding the watermark. Their technique modifies instruction

frequencies to represent the watermark. Qu and Potkonjakmade use of the graph

coloring problem to embed a watermark in the register allocation of an application.

The first dynamic watermarking algorithm, CT, was proposed by Collberg et al. In this

technique the watermark is embedded through a graph structure which is built on the

heap at runtime. A second technique by Cousot makes use of abstract interpretation

to embed a watermark in values assigned to integer local variables during execution.

Collberg et al proposed a dynamic path-based technique which embeds the watermark

in the dynamic branching behavior of the application by modifying the sequence of

branches taken and not taken on the secret input sequence. A final dynamic

technique by Nagra and Thomborsonrelies on multi-threading to embed the

watermark. Of the early algorithms very little has been published on their

implementation and evalu- ation. There are a few existing implementations of the CT

algorithm, such as the one within the SANDMARK framework and that by Palsberg et

al. A recent dissertation by Hachez provides an analysis of the Stern algorithm, as

does Sahoo. The Qu and Potkonjak technique was evaluated by Myles and Collberg et

al provides an evaluation of the Venkatesan technique. SANDMARK is a research tool

for studying software protection techniques and in particular software watermarking,

code obfuscation, and tamper-proofing of Java bytecode. One of the goals of the

SANDMARK project is to implement and evaluate all known software watermarking

algorithms. The system includes a variety of tools that permit the study of

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 54

watermarking algorithms with respect to such properties as resiliency and stealth.

Through the implementation and evaluation of known software watermarking

algorithms we will be able to gain an understanding of what makes a software

watermarking technique strong.

Figure 1 shows a conceptual diagram of a simple static watermarking system.

FIGURE 1

Opaque predicates

Opaque predicates were first presented by Collberg et al. [9] as a technique to aid in

code ob- fuscation and later incorporated in a software watermarking technique

proposed by Monden et al. [14, 15]. Informally, opaque predicates are inserted to make

it difficult for an adversary to analyze the control-flow of the application. This makes it

more difficult to identify that certain portions of the application are superfluous. For

example, the Monden algorithm uses opaque predicates to disguise the fact that a

dummy method is never invoked.

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 55

Definition 2. (Opaque predicate). A predicate P is opaque at a program point p, if at

point p the outcome of P is known at embedding time. If P always evaluates to True we

write PT p, for False we write PF p , and if P sometimes evaluates to True and

sometimes to False we write P? p.

Definition 3. (Opaque method). A boolean method M is opaque at an invocation point

p, if at point p the return value of M is known at embedding time. If M always returns

the value of True we write MT p , for False we write MF p , and if M sometimes returns

True and sometimes False we write M? p.

Thekeychallengetousingopaquepredicatesoropaquemethodsistodesigntheminsuch a

way that they are resilient to various forms of analysis. If an adversary can easily

decipher

thevalueofanopaquepredicateitprovidesverylittleprotectionforthesoftware.Avarietyof

techniquessuchasusingnumbertheoreticresults,pointeraliases,andconcurrencyhavebee

n suggested for the construction of opaque predicates . In addition to the number

theoretic results, Arboit also suggests a technique for constructing a family of opaque

predicates through the use of quadratic residues. Our current implementation of the

Arboit algorithms uses number theoretically true opaque predicates and opaque

methods. The nine we have implemented thus far can be seen in Table 1. An

important aspect of the Arboit algorithms is that the opaque predicate library must

remain secret. If an adversary knows even a few of the opaque predicates used in the

embedding he may be able to identify them in the application and then remove them.

None of the nine opaque predicates used in the current implementation are considered

cryptographically secure or even resilient to analysis. While this does weaken the

implemen- tation it does not invalidate the analysis in Section 5. The disadvantage of

using these opaque predicates is that the algorithm is not as stealthy and is

susceptible to manual attacks that will be elaborated on. As more sophisticated

opaque predicates become available within the SANDMARK framework they will be

used to embed the watermark in place of the simple ones in table 1

Arboit algorithm

Arboit proposed two watermarking techniques both based on opaque predicates. The

first algorithm (henceforth GA1) is the basic insertion algorithm which directly uses

the opaque predicates. To embed a watermark, w is split into k pieces, w0,...,w k−1,

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 56

and k branchingpoints, b0,...bk−1, are randomly selected throughout the application.

At each branching point bi, either∧PTbi ,∨¬PT bi , or∨PF bi is appended to the

predicate at that location. The bits

ofthewatermarkareembeddedthroughtheopaquepredicatethathasbeenchosen.Withinthe

opaque predicate the bits can be encoded either as constants or by assigning a rank to

each of the opaque predicates. To recognize the watermark the application is scanned,

extracting all identifiable opaque predicates. The bits of the watermark are then

decoded from the opaque predicate. As an example, suppose our watermark is

encoded in the opaque predicate x2 ≥ 0. A watermark could be embedded as follows:

The second Arboit algorithm (henceforth GA2) is similar to GA1 except opaque

methods are used to embed the watermark. Again k branching points b0,...,bk−1 are

randomly selected throughout the application. For each bi, MT bi or MF bi is created

and a method call is appended. The bits of the watermark are encoded in the opaque

method through the opaque predicate that it evaluates. To recognize the watermark

the application is scanned, extracting all opaque methods which are first identified

through their signatures. Once a possible candidate has been identified the method

body is examined to find the opaque predicate. To illustrate, suppose we use the same

opaque predicate as above. Using GA2 the application would be transformed in the

following way:

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 57

Arboit claims that GA2 is more secure. The main argument is that changing the

signature ofamethodisdifficult.However,thisclaimisuntrueandSANDMARK

includescodeobfusca-tions which can do just

that.wewillshowthatGA1isinfactastrongeralgorithm than GA2. This claim demonstrates

the importance of implementation and evaluation in the proposal of a software

watermarking algorithm.

Implementation details

Our implementations of GA1 and GA2 follow from the algorithms presented by

Arboit.A few modifications described below were made in an attempt to make the

algorithms more resilient to attack. In addition, we developed and implemented

dynamic versions of the algorithms.

Watermark encoding

Arboit proposed an encoding technique in which each piece of the watermark also

includes an index value. By including the index value the watermark pieces can be

recovered in any order. Our implementation also splits the watermark so that it can be

recovered in any order, but the index value is not required. Prior to embedding the

watermark w it is encoded as an integer and split into k pieces {w1,w2,...,w k} such

that 0 ≤ wi ≤ n. The technique used to split the watermark relies on a 1-1

correspondence between a multiset S of size m (where S ={si :0≤ si ≤ n}) and

combinations of size n chosen from m +n elements. Given this correspondence, the

splitter enumerates combinations of n chosen from the m +n elements for some fixed

n. By using this particular splitting technique the order of the pieces is unimportant.

The k pieces of the watermark are encoded in the opaque predicates in one of two

ways: through the use of constants in the predicate or by assigning a rank to each of

the opaque predicates in the library. If the opaque predicate is a number-theoretic

result, wi can be encoded:

1. in the constants contained in the predicate, or

2. by inserting new constants in the predicate.

For example, consider encoding the value 42 using the opaquely true predicate 4|x2(x

+ 1)(x +1).

Thispredicatehasaconstantvalueof6becauseitcontainstheconstants 4, 1, and 1. Thus

the value 36 still needs to be encoded. This is accomplished by multiplying

bothsidesby18whichproducestheopaquepredicate[(18)(4)]|[(18)x2(x +1)(x +1)].This

technique does not change the value of the opaque predicate and it permits the

encoding of any n ∈

N

. To encode an odd valued watermark select an opaque predicate that already has an

odd constant value such as 2|x(x +1). Either technique for encoding the watermark

using constants is valid, but using only the constants that are contained in the

predicate is restrictive. For example, using the 9 opaque predicates in Table 1, only

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 58

the values{0,3,4,6,8,27,88}can be encoded. The disadvantage of inserting new

constants is that it makes the opaque predicate more obvious. To encode wi using

rank, each of the opaque predicates are assigned a value starting at 0. Using

SANDMARK’s library the values {0,...,8} can be encoded. While this technique is

simple, it does require that the opaque predicate library be a fair size in order to be

useful.

Watermark embedding

TheembeddingprocessisdependentonidentifyingasetBofpossiblebranchingpoints.This

set is identified through preprocessing each method in the application. For each wi∈ w

an opaque predicate PT bj or a call to an opaque method MT bj is appended to a

selected bj∈ B. In an attempt to increase the strength of the algorithm we identify local

variables in the method which can be used in the opaque predicate. These variables

are identified through the use of a forward slice centered aroundbj.

The most significant advantage to using live variables in the opaque predicate (as

opposed to inserting new variables) is that it aids in disguising the superfluous nature

of the predicate. The current disadvantage to this technique is that it is not always

possible to identify local

variablescontainingintegersaroundaselectedbj.Thus,somebranchingpointsareunusable.

This disadvantage will be alleviated as other types of opaque predicates become

available. We were also able to add one more detail to the implementation that not

only increases the stealth but decreases the overhead. To embed a watermark using

GA2, k new methods are added to the application. This increase in code size could be

unacceptable to size sensitive applications such as those on mobile devices. One

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 59

solution is to encode wi using rank and reuse the new methods that are added to the

application. For example, without method reuse the example class C could be

transformed into the class in Figure 1. With method reuse it is transformed into the

class in Figure 2. This detail increases the stealth by further disguising the

superfluous nature of the opaque method. Arboit discusses a technique to inhibit the

adversary’s ability to destroy the watermark using method overloading. If the

adversary attempts to modify the types of the overloaded

method, overriding occurs which could lead to faulty behavior. The current

implementation does not support this technique, but we will see that such a technique

does not prevent watermark distortion in those instances where GA1 outperforms

GA2.

Watermark recognition

The recognition procedure varies slightly depending on which embedding technique is

used. Watermark recovery using GA1 involves an exhaustive search of each method.

To identify sets of instructions that may be opaque predicates the basic blocks of the

control flow graph (CFG) and expression trees are constructed. Each opaque predicate

will end with an if instruction which can be found as the last instruction of a basic

block. The instructions that comprise the expression tree for that if instruction are

compared to the entries in the opaque predicate library. If the watermark was

embedded using GA2 then each method is scanned looking for invoke instructions

which call a method that has the same signature as one of the opaque methods.

Currently all opaque methods have a return type of boolean and either 1 or 2

parameters of type int. In the case when opaque methods are not reused the

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 60

recognition process could have been simplified to checking the signature of each

method. Unfortunately thisdoesnotyieldthecorrectnumberofpieceswhenmethods

arereused.Withineachopaque method is an opaque predicate that is identified using

the same technique as in GA1. If wi is encoded using rank, the rank of that particular

opaque predicate is identified. If constants are used, the sum of the constants is

extracted from the predicate. Once all possible wi have been identified the values are

combined to produce the watermark value.

Dynamic arboit algorithms

Oneoftheyetunansweredquestionsintheareaofsoftwarewatermarkingiswhetherdynamic

algorithms are inherently more resilient to attack than static algorithms. One

technique to investigate this idea is to develop, implement, and evaluate a dynamic

version of an already known static algorithm. To this end we have developed and

implemented dynamic versions of GA1 and GA2 (DGA1 and DGA2 respectively).

Dynamicalgorithmsmakeuseofaprogram’sexecutionstatetobothembedandrecognize a

watermark. There are three different dynamic techniques: Easter Egg Watermarks,

Data

StructureWatermarks,andExecutionTraceWatermarks.DGA1andDGA2areexecution

tracewatermarkingalgorithmsbecausethewatermarkisembeddedinthetraceoftheprogra

m as it is run with a specific input. This input represents the user’s secret key. For

example, suppose the application is a Tic-Tac-Toe game. The order in which the X’s

and O’s are placed on the game board becomes the secret key. The novel aspect of

DGA1 and DGA2 is that the execution trace is used to identify the set of program

branching points B instead of using randomly selected points. The motivating factor in

this design is that the program will execute the original set of branching points when

run with the secret key no matter how distorted an attacker makes the application.

This assumption is based on the idea that most transformations that cause the

execution to skip the branch will most likely alter the functionality of the application.

Thus the dynamic nature will improve the algorithm’s ability to withstand distortive

attacks. The set B of program branching points is required for both the embedding

and recognition phases. B is compiled by annotating the application prior to

execution. The annotation phase is fully automated and consists of adding a special

function call immediately before each

Evaluation

In order for a software watermarking technique to be effective against software piracy

and copyright infringement it should be resilient against determined attempts at

discovery and removal. Very little work has been done on evaluating the strength of

software watermarking systems and thus a formal set of properties has yet to be

established. Through our study of software watermarking algorithms using the

SANDMARK system we have compiled the following properties which we believe aid in

evaluating the strength of an algorithm [8, 13, 20]:

credibility: The recognition process should report a watermark that was embedded and

should not report false watermarks.

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 61

data-rate: The algorithm should have a high data-rate to permit the embedding of a

reason- ably sized secret message.

overhead: Embedding a watermark should have little impact on the performance of the

application and the embedding/recognition procedure should not be costly. part

protection: In order to protect the watermark it should be distributed throughout the

application. resiliency: The watermark must be resilient against determined attempts

at discovery and removal. In particular it should be resilient to three important types

of attacks:

In a subtractive attack the attacker attempts to remove the watermark from the

disassem- bled or de-compiled code. Through a manual or automated inspection of the

code the attacker may be able to identify and remove a watermark with low

transparency without damaging the application.

In an additive attack the attacker adds a new watermark to the already watermarked

program in an attempt to cast doubt on which watermark was embedded first.

In a distortive attack a series of semantics-preserving transformations are applied to

the software in an attempt to render the watermark unrecoverable but maintain the

software’s functionality and performance.

stealth:The embedded watermark should be difficult to detect; i.e. it should exhibit

the same properties as the code or data around it.

We have evaluated both the static and dynamic versions of theArboit algorithm within

SANDMARK with respect to each of the above properties. SANDMARK includes a

variety of tools that an adversary may use to discover and/or remove a watermark.

These tools include:

An obfuscation tool that permits the evaluation of resiliency of the watermark under

distortive attacks.

Additional watermarking algorithms for studying additive attacks (and in the future for

comparison purposes).

A bytecode viewer to display the watermarked bytecode and for manually examining

the stealth of the watermark.

A statistics module that provides static statistics about an application, such as the

number of methods, number of conditional statements, etc., which also aids in the

evaluation of stealth.

ToevaluatethestaticGA1andGA2asetof11applicationsareusedwhichvaryinbothsize and

complexity. Two of these 11 applications are also used for the dynamic algorithms:

TTT (which is a Tic-Tac-Toe game) and JKeyboard (which allows a user to type using

different alphabets). The evaluation of the dynamic algorithms requires applications

that make use of user input. This is required so that different execution traces can be

obtained. Details of 10 of the applications can be seen in Table 2. The 11th application

is specjvm.

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 62

Credibility

The credibility of a watermarking algorithm is based on the accuracy of watermark

recovery. An algorithm can have poor credibility if it recovers a watermark which was

not embedded in the application (a false positive) or not recovering a watermark that

was embedded (a false negative). To evaluate the algorithms with respect to this

property we ran the recognition algorithms on non-watermarked and obfuscated

versions of the benchmark applications. No false negatives or false positives were

detected in any of the test cases.

Part protection

Theideabehindthepartprotectionpropertyistosplitthewatermarkintopiecesandspreadit

acrosstheapplication.Thesplitwatermarkhasabetterchanceatsurvivalsinceitrequiresthat

the attack target multiple locations in the application. Both the static and dynamic

algorithms incorporate part protection by splitting w into k pieces and randomly

distributing those pieces. It was previously mentioned that reusing the opaque

methods provided an advantage by decreasing the overhead and increasing the

stealth. Unfortunately this technique also decreases the part protection. If the opaque

method was used to encode three of the 10 pieces of w removing the method has a

higher impact than if only one piece was destroyed.

Resilience

There are three types of attacks that an adversary could launch in an attempt to

destroy a watermark: subtractive, additive, and distortive.

Subtractive attacks

One of the first things that an adversary may do in an attempt to eliminate a

watermark is decompile the application. Once the code has been decompiled the

attacker can search for aspects of the code that look suspicious such as dummy

methods. If the attacker is familiar with simple number theory properties he may

realize that the watermark application contains opaque predicates. If they are removed

the application will still function normally and the attacker has subverted the

protection. This watermarking technique will always be susceptible to subtractive

attacks but using stronger opaque predicates, such as ones that are

notcommonlyknown,willmakeitharderfortheattackertodetectthewatermarkedsections.

In addition, maintaining the secrecy of the opaque predicate library will also improve

the resiliency against subtractive attacks.

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 63

Additive attacks

Additive attacks are used by an adversary when he is either unable to locate the

watermarked code or unable to remove the watermarked code. This type of attack is

used to cast doubt on the validity of the original watermark or to destroy the original

all together. Table 5 shows the results from applying other watermarking algorithms in

the SANDMARK system to the test cases that had been watermarked using GA1, GA2,

DGA1, DGA2. We found that the original watermark is quite resistant to the

application of an additional watermark. However, embedding a watermark using the

same algorithm or one of the other GA’s destroyed the original watermark. This

occurred because the recognition procedure detected additional opaque predicates. In

addition we discovered that both watermarks are unrecoverable if we apply GA1 then

GA1, GA2 then GA2, or GA2 then GA1. Even though the original was destroyed, the

attacker will not be able to embed his own watermark using one of these techniques.

The same results occur with DGA1 and DGA2 except that applying DGA2 then DGA1

does not destroy both watermarks.

Distortive attacks

Distortive attacks are any semantics preserving code transformation, such as code

obfus- cation or optimization algorithms. This type of attack is used to distort a

watermark such that it is unrecoverable. The advantage of this attack over subtractive

attacks is that the adversary need not know the exact location of the watermark.

Rather, he can apply the transformation indiscriminately over the application.

Through the application of the code obfuscations found in SANDMARK we discovered

that GA1 is more resilient than GA2. This discovery contradicts the claim made in [5].

The author claims that GA2 is stronger since it is difficult to alter the signature of a

method. The obfuscations Method 2R Madness, Primitive

Promoter,andPromoteLocalsallmodifythesignaturesofthemethods in the application. It

is possible that implementing the overloading technique described would improve the

resiliency against Primitive Promoter and PromoteLocals.

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 64

Summary

Software piracy is an ongoing problem in the software industry. While there are some

legal

meanstohandletheproblemtheydonotalwaystargettheguiltyparty.Softwarewatermarking

is an additional technique that can be used in the battle. The technique makes proof

of authorship or purchase possible and in some cases the source of the illegal

distribution can be identified. In this paper we provided an implementation and

evaluation of two techniques proposed. In addition, we presented a novel extension of

the technique to study static versus

dynamicwatermarkingalgorithms.ThroughouranalysisweshowedthatbothGAalgorithms

can be defeated. We also showed that GA1 is a stronger algorithm than GA2. We based

these

conclusiononsixproperties.OftheseGA1hadaloweroverhead,wasmoreresilienttoattack,

and demonstrated a higher degree of stealth. With respect to the remaining three

properties the algorithms were equal. We also showed that the dynamic algorithms are

only minimally stronger than the static versions. From this we conclude that it is not

clear that converting a known static algorithm will improve the strength. However, this

does not indicate that the class of dynamic algorithms is not inherently stronger.

References

[1] Business software alliance, http://www.bsa.org.

[2] Sandmark. http://www.cs.arizona.edu/sandmark/.

[3] Specjvm98 v1.04. http://www.specbench.org/osg/jvm98/.

[4] Aho, A. V., Sethi, R., & Ullman, J. D. (1988). Compilers: Principles, Techniques,

and Tools. Addison- Wesley.

[5] Arboit, G. (2002). A method for watermarking java programs via opaque predicates.

In The Fifth Inter- national Conference on Electronic Commerce Research (ICECR-5).

International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107

Volume-2 | Issue-2 | February,2016 | Paper-8 65

http://www.cs.arizona.edu/sandmark/
http://www.specbench.org/osg/jvm98/

