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ABSTRACT 

 Regression tree   was used in modelling and mapping cation exchange capacity of soils in 

Akwa Ibom State, Nigeria.The aim was to provide an alternative techinque of estimating 

ECEC from more readily available soil data and map the distribution for site-specific soil 

management. The study area (Akwa Ibom State) was grouped into four major mapping units 

based on parent materials, namely:  coastal plain sand, sandstone, shale and beach ridge sand. 

Each parent material (major mapping unit) was subdivided into four commonly practice 

landuse types/soil management systems namely homestead or compound farmland, oil palm 

plantation, secondary forest of 3 years and above and cultivated farmland.  In each landuse 

type/soil management system, mini- soil profile pit was dug to a depth of 100cm at 

representative location. Soil samples were collected from designated depths of 0-20, 20-60 

and 60-100 cm. A total of 144 samples were generated for laboratry analysis. The study 

revealed that ECEC can be predicted using soil organic carbon, clay, silt and soil pH in the 

study area. The results of independent variable importance to the model showed that organic 

carbon was the most significant predictor of ECEC with 22.1 % contribution, followed by 

clay with 17.3 %, followed by silt with 8.5% while soil pH was the least predictor of ECEC 

with 0.8% contribution in the study area. Based on the model, organic carbon content 

predicted ECEC of 32.4 cmol/kg in sandstone soil while organic carbon in combination with 

clay predicted ECEC of 40.24 cmol/kg in soils developed from shale parent material. In 

coastal plain sand soils, organic carbon in combination with clay and silt predicted ECEC of 

24.3 cmol/kg. In beach ridge sand soils, organic carbon in combination with clay and silt 

predicted ECEC of 17.8 cmol/kg. The model showed that organic carbon content was the 

only significant predictor of ECEC in sandstone soils while organic carbon in combination 

with clay made significant prediction of ECEC in shale parent material. In coastal plain sand 

and beach ridge sand soils, Organic carbon in combination with clay and silt made significant 

prediction of ECEC. In the application of the model, independent variables included in the 

final model and measured in the same unit should be used. 

Keywords: modelling, regression tree, CEC, soil of Akwa Ibom State. 
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Introduction 

Cation Exchange Capacity (CEC) is one of the most important soil properties that is 

required in soil databases. It is a good indicator of soil fertility, crop growth and pollutant 

transport and is used as an input in soil and environmental models (Manrique et al., 1991; 

Keller et al., 2001). Cation Exchange Capacity is the total exchangeable cations that a soil 

can hold at a specified pH. It measures the potential capacity of soil to hold and exchange 

cations at a specified pH, measures soil’s capability to store and filter chemicals, buffer soil 

chemical properties against changes, influenced structural stability, nutrient availability, soil 

pH and the soil’s reaction to fertilisers and other ameliorants. In acid soil, (pH <5.5), the sum 

of Ca2+, Mg2+, K+ and Na+ is often less than the exchange capacity of the soil, the remainder 

is filled by Al3+, H+ and Mn (Rengasamy and Churchman, 1999).  

Soil components known to contribute to CEC are clay and organic matter, and to a 

lesser extent, silt (Manrique et al., 1991).  Both of these are negatively charged particles in 

the soil that attract the positively charged (cations) nutrients. In clays, the negative charge is 

due to an excess of oxygen atoms in the crystal clay structure (permanent charge).  The types 

of clay such as the swelling clays (smectite and montmorillonite) have a higher CEC than the 

non- swelling type clays (kaolinite). Soil organic matter on the other hand, does contribute to 

the CEC but in a complex way. The contribution depends on the type of organic matter and 

the inherent soil chemical environment (Charman and Murphy, 2007). According to Oades et 

al. (1989), carboxyl groups of organic matter are the major source of the negative charge that 

contributes to CEC. The humification of soil organic matter gives rise to a wide range of 

compounds such as humin, humic acids (HAs), fulvic acids (FAs) and derivative of amino 

acid and phenolic acid which have the general form of R-CH3-COOH and R-CH2-COOH 

(Stevenson, 1982).  As the pH of the soil increases from 5.0 to 7.0, the hydroxyl groups 

become disassociated or ionized to form negatively charged (R*COO) sites which are 
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available for cation exchange. Carboxyl group in humus ionise or disassociate mainly in the 

acid part of the pH scale while phenolic hydroxyl groups disassociate at pH above 6.0. When 

the pH falls below 5.0, many of the compounds of organic matter are not dissociated and so 

do not displays a negative charge (Stevenson, 1982). Partitt et al. (1995) found that most of 

the CEC attributed to topsoil organic matter was from carboxyl functional groups and a 

critical limite of 2% of soil organic carbon was necessary for soil organic matter to have an 

appreciable effect on CEC.  

Although CEC can be measured directly, its measurement is difficult, time consuming 

and expensive. Pedotransfer Functions (PTFs) provide an alternative mean of estimating CEC 

from more readily available soil data. The term pedotransfer function was coined by Bouma 

(1989) as translating data we have in to what we need. In recent years, several researchers 

tried to estimate CEC from basic physical and chemical soil properties (Bell and McBratney 

et al., 2002). In many of the models, CEC is assumed to be a linear function of soil organic 

matter and clay content and therefore used linear regression in the modelling. Drake and 

Motto (1982) reported that greater than 50% of the variation in CEC was explained by the 

variation in clay and organic C content in several New Jersey soils. Krogh et al. (2000) 

reported 90% variation in CEC due to variation in silt, clay, organic carbon and soil pH. For 

valid application of linear regression in modelling, certain assumptions must be satisfied. 

Some of  the assumption includes, the relationship between dependent variable and 

independent variables must be linear; independent variables must be linearly independent of 

each other otherwise multicollinearity is present, the distribution must be normally distributed 

(parametric) etc. Some relationships between dependent variable and independent variables 

may not be linear and the distribution may not be normally distributed (non-parametric). To 

overcome these limitations, some techinques such as classification and regression tree can be 

resorted to without undergoing data transformation and principal component analysis. 
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Classification and regresson tree (CART) is one of the popular machine learning and 

data mining algorithms (Huang et al., 2010). Machine learning and data mining is a field of 

computer science that gives computers the ability to learn based on the inherent 

characteristics of data, without being explicitly programmed, uncovering patterns and 

structures in (large) data sets and deriving predictive relationships (Diplaris et al., 2006). 

Classification and regression tree is a systematic approach used in building classification and 

regression models from an input data set. The model or tree like- structure consists of nodes 

and leaves. The nodes are spltting points while the leaves are the terminal nodes. The 

objective of building a classification and regression tree is to find a model or tree-like 

structure which recursively partitions the learning data set into predefined class (classification 

tree) or mean value (regression tree).  It is most suited for predicting or describing data set 

with binary or nominal catorgories.  The main characteristic of classification tree is that the 

feature space (i.e., the space spanned by all predictor variables) is recursively partitioned into 

a set of rectangular areas (Brieman et al., 1984). Recursive partitioning divides up the ‘p’ 

dimensional space of the ‘x’ variables into non-overlapping rectangles. This division is 

accomplished recursively. The partition is created such that observations with similar 

response values are grouped into rectangular areas. Each rectangle is as homogenous or as 

‘pure’ as possible (Brieman et al., 1984).  Pure here refers to area containing points that 

belong to just one class which can be displayed either as a tree, or as a rectangular partition of 

the feature space. The prediction at the leaf is the mean value of data points or the model 

class. In selecting the splitting variable and cutpoint, classification tree follows the approach 

of impurity reduction. Each split in the tree-building process results in daughter nodes that 

are more pure than the parent node in the sense that groups of subjects with a majority for 

either response class are isolated. The impurity reduction achieved by a split is measured by 

the difference between the impurity in the parent node and the average impurity in the two 
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daughter nodes. The most common methods of measuring impurity in classification and 

regression tree are the Shannon entropy and the Gini index.  Gini Index and Shannon entropy 

are used to quantify the impurity in each node. These entropy measures have in common that 

they reach their minimum for perfectly pure nodes with the relative frequency of one 

response class being zero and their maximum for an equal mixture with the same relative 

frequencies for both response classes.  

According to Wagner et al. (2001), models developed for one region may not give 

adequate estimates for a different region. When soils are grouped by similarities in origin or 

properties, accuracy of predictive models are improved (Pachepsky and Rawls, 1999).  In 

Akwa Ibom State, very limited work has been carried out to estimate or model soil CEC from 

easy available soil physical and chemical properties using regression tree. Therefore, this 

study was conducted to model and mapped cation exchange capacity of soils of Akwa Ibom 

State,   for site-specific soil management using regression tree. 

                                  

                                  MATERIALS AND METHODS 

The study area 

     The study was conducted in Akwa Ibom State, located in south eastern Nigeria. It lies 

between latitudes 4030’ and 5030’N and longitudes 70 30’ and 8020’E, and underlain mainly 

by coastal plain sands, beach ridge sands, sandstone / shale and alluvial deposits parent 

materials. The climate is humid tropical, annual rainfall ranges from more than 3000 mm 

along the coast to about 2250 mm at the extreme north, with 1 – 3 dry months in the year. 

Mean annual temperature varies between 26 and 280C, while relative humidity varies 

between 75 – 80 %. The original natural vegetation which comprised lowland rainforest, 
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mangrove forest and coastal vegetation, has given way to a mosaic farmland, riparian forest 

and oil palm forest (Petters et al., 1989). 

Field work 

The study area was grouped into four major mapping units based on the parent materials, 

namely:  coastal plain sand, sandstone, shale and beach ridge sand. Each parent material 

(major mapping unit) was subdivided into four commonly practice landuse types/soil 

management sysytems namely homestead or compound farmland, oil palm plantation, 

secondary forest of 3 years and above and cultivated farmland. In each landuse type/soil 

management system, mini- soil profile pit was dug to a depth of 100cm at representative 

location. Soil samples were collected from designated depths of 0-20, 20-60 and 60-100 cm. 

A total of 144 samples (3 replications x 4 landuse types x 4 parent materials x 3 depths =1 44 

samples) were generated for laboratry analysis.  

Laboratory analysis 

The following analyses were carried out using appropriate standard procedures: 

Particle size analysis was carried out using the bouyoucos hydrometer method as described 

by Udo et al. (2009).   Soil pH was determined in water using a 1:2.5 soil to water suspension 

and the soil pH was read using a glass electrode.  Organic carbon was determined by the 

dichromate wet-oxidation method as described by Nelson and Sommers (1996). The value 

was multiplied by 1.732 to obtain organic matter content.    Exchangeable bases: Ca, Mg, Na, 

K. were extracted using normal ammonium acetate (Thomas, 1986). The exchangeable K and 

Na were determined by flame photometer while Ca and Mg were determined using atomic 

absorption spectrometer. Effective cation exchange capacity (ECEC) was determined by 

summing up exchangeable cations   and exchangeable acidity. 
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              RESULTS AND DISCUSSION 

1. Soil properties of the study area 

The mean, minimum, maximum and variance of soil properties of the study area are 

presented in Table 1. In soils developed from beach ridge sand parent material, the mean sand 

fraction was 84.85 %, silt fraction was 7.17 % while clay fraction was 11.03 %. In soils 

developed from coastal plain sand parent material, mean sand fraction was 75.45 %, silt was 

6.17 % while clay fraction was 16.42 %. In sandstone soils, sand fraction was 75.78 %, silt 

was 4.33 % while clay fraction was 19.67 %. In soils developed from alluvium parent 

material, mean sand fraction was 51.50 %, silt was 14.67 % while clay fraction was 33.83 %. 

Based on the USDA textural classes, the soil texture of beach ridge sand ranged from sand in 

the surface soil to sandy clay loam in the subsurface soil.  In soils developed from coastal 

plain sand and sandstone parent materials, soil texture ranged from sand in the surface to 

sandy clay in the subsoil. In soils developed from alluvium, soil texture ranged from loamy 

sand in the surface to clay in the subsurface soil. The variation in soil texture among the 

parent materials could be attributed to influence of parent material (coastal plain sand, beach 

ridge sand, sandstone /shale) (Soil Survey Staff, 2006). 

The mean soil  pH in water of beach ridge sand soils was 5.3 , coastal plain sand soils 

was  5.5, sandstone soils was 5.2 while alluvium soils was 5.7. The mean hydrogen ion 

concentration (pH) indicated that beach ridge sand soils, coastal plain sand and sandstone 

soils were strongly acid while allvium was moderately acid. The general acidity in the study 

area could be attributed to high rainfall in the area and as well as high agricultural activities. 

In humid environment, soil pH decreases over time in a process called acidification due to 

leaching caused by high amount of rainfall.   Also, the   coarse texture soil in the soil surface 

with low buffering capacity could be responsible for the soil acidity.  Soils with high clay and 
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organic matter content are more able to resist a drop or rise in pH (have greater buffering 

capacity) (Whitebread et al., 1998). 

The mean soil organic carbon of beach ridge sand soils was 3.7 %, coastal plain sand 

soils was  4.5 %, sandstone soils was 0.7 % while alluvium soil was 2.0 %.  The values 

indicated that organic carbon was very high in all the parent materials in the study area execpt 

in sandstone soils (Enwezor et al., 1989). The low organic carbon content in sandstone soils 

than others could be attributed to low organic matter inputs coupled by reduced physical 

protection of SOC as a result of tillage and increased oxidation of soil organic matter (John et 

al., 2005). 

The mean  available P of beach ridge sand soils was 12.0 mg/kg, coastal plain sand 

soils was  24.1 mg/kg, sandstone soils was 10.3 mg/kg while alluvium soil was 15.0 mg/kg. 

The mean available P was high in soils developed from coastal plain sand, and moderate in 

all other parent materials. The high P content in coastal plain sand soils could be attributed to 

high organic matter content in the soil (John et al., 2005). 

The mean  exchangeable Ca of beach ridge sand soils was 3.7 cmol/kg, coastal plain 

sand soils was 3.6 cmol/kg, sandstone soils was  4.3 cmol/kg while alluvium soils was 3.3 

cmol/kg. The mean  exchangeable  Mg of beach ridge sand soils was 0.8 cmol/kg, coastal 

plain sand soils was  1.6 cmol/kg, sandstone soils was  2.0 cmol/kg while alluvium soils was 

1.4 cmol/kg.. The mean  exchangeable  Na of beach ridge sand soils was 1.0  cmol/kg, coastal 

plain sand soils was  0.06 cmol/kg, sandstone soils was  0.06 cmol/kg while alluvium soils 

was 0.1 cmol/kg. The mean  exchangeable  K of beach ridge sand soils was 0.14 cmol/kg, 

coastal plain sand soils was  0.19 cmol/kg, sandstone soils was  0.06  cmol/kg while alluvium 

soils was 0.17 cmol/kg. Mean exchangeable Ca and K were low in the study area. Mean 

exchangeable Mg was low in beach ridge sand soils, moderate in coastal plain sand, 
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sandstone and alluvium soils. Mean exchangeable Na was high in beach ridge sand soils and 

low in all other parent materials in the study area. The variation is due to difference in parent 

materials and soil organic matter (John et al., 2005). 

The mean   cation exchange capacity (CEC)  of beach ridge sand soils was 6.9  

cmol/kg, coastal plain sand soils was  9.9 cmol/kg, sandstone soils was 11.4 cmol/kg while 

alluvium soils was 8.9 cmol/kg. The CEC of the study area was low.  The low CEC of the 

study area could be attributed to the type and quantity of clay and low organic matter content. 

Soils low in clay (< 15 %) are much more dependent on soil organic matter to provide CEC 

and biotic processes dominate, whereas soils high in clay (>35 %), biotic processes are 

minimal (Oades, 1993).   

Table 1: Range and mean of soil properties in the study area 

Soil property                                Parent material 

  Beach ridge sand Coastal plain sand  Sandstone Alluvium 

Sand (%) Mean 84.85 75.45 75.78 51.50 

 Mini 69.20 18.00 59.00 27.00 

 Max 95.20 90.60 90.00 75.00 

 Variance 67.1 194.5 124.2 547.1 

      

Silt (%) Mean 7.17 6.17 4.33 14.67 

 Mini 1.40 2.00 1.00 12.00 

 Max 22.10 14.00 8.00 20.00 

 Variance 28.6 16.9 6.3 11.9 

      

Clay (%) Mean 11.03 16.42 19.67 33.83 

 Mini 0.80 3.00 6.00 12.00 

 Max 41.40 39.00 38.00 60.00 

 Variance 90.5 125.6 141.7 451.8 

      

pH(water) Mean 5.3 5.5 5.2 5.7 

 Mini 4.0 4.2 4.6 5.1 

Max 6.9 7.5 5.9 6.2 

 Variance 0.5 0.7 0.2 0.2 

      

OC (%) Mean 3.7 4.5 0.7 2.0 

 Mini 0.2 0.0 0.2 1.3 

 Max 15.9 19.2 1.4 2.4 

 Variance 29.6 37.4 0.2 0.2 

      

AvP (mg/kg) Mean 12.0 24.1 10.3 15.0 

 Mini 1.2 4.7 4.1 8.1 

 Max 56.0 71.9 18.4 34.0 

 Variance 220.1 375.3 33.1 92.1 

      

Ca (cmol/kg) Mean 3.7 3.6 3.6 3.3 

 Mini 0.2 0.9 0.9 1.6 

 Max 14.4 7.9 7.9 5.1 

 Variance 18.9 3.2 3.2 2.0 
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Mg (cmol/kg) Mean 0.8 1.6 2.0 1.4 

 Mini 0.3 0.8 1.2 1.2 

 Max 2.4 2.8 3.1 1.8 

 Variance 0.5 0.2 0.4 0.006 

      

Na (cmol/kg) Mean 1.0 0.06 0.06 0.10 

 Mini 0.04 0.03 0.04 0.04 

 Max 3.5 0.2 0.1 0.21 

 Variance 0.7 0.001 0.001 0.005 

      

K (cmol/kg) Mean 0.14 0.19 0.06 0.2 

 Mini 0.03 0.04 0.03 0.008 

 Max 1.8 0.6 0.11 0.3 

 Variance 0.1 0.03 0.001 0.007 

      

CEC (cmol/kg) Mean 6.9 9.9 11.4 8.9 

 Mini 1.6 5.2 9.6 5.0 

 Max 17.4 15.5 17.3 14.4 

 Variance 24.6 7.3 5.4 16.4 

 

2: Method of growing tree and Specifications 

The summary of the tree growing method is presented in Table 2: The method adopted for 

this analysis was classification and regression tree (CRT). The independent variables used in 

the study were clay, organic carbon, silt and soil pH. Specifications were five maximum tree 

depth, thirty minimum cases in parent node and five minimum cases in child node.  Method 

of validation was cross validation. After analysis, the results showed that all the selected 

variables contributed in the prediction of ECEC, final number of nodes were 9 with five 

terminal nodes and four tree depths. 

 

Table 2: Tree growing method  and Specifications 

Specifications 

Growing Method CRT 

Dependent Variable CEC 

Independent Variables OC, pH, silt, clay 

Validation Cross Validation 

Maximum Tree Depth       5 

Minimum Cases in Parent 

Node 
     30 

Minimum Cases in Child 

Node 
     5 

Results 

Independent Variables 

Included 
clay, silt, OC, pH 

Number of Nodes     9 

Number of Terminal Nodes     5 

Depth     4 
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3: Independent variables importance 

The independent variable importance is presented in Table 3 and the barchart in Figure 1. The 

model summary indicated that all the independent variables selected for analysis made 

significant contribution to prediction of CEC except soil pH with insignificant contribution.  

Among the variables selected, clay was the most significant predictor of CEC with 5.7 % 

contribution, followed by organic carbon with 1.3 %, followed by silt with 1.2% while soil 

pH with 0.6% was the least predictor of CEC in the study area. The trend was as followed: 

clay fraction > organic carbon > silt fraction > pH. The high contribution of clay to CEC than 

organic matter and silt fractions in the study area could be attributed to charge development 

on clay. Although, kaolinite is the dominant clay mineral type in the study area, which is non-

expanding with low charge development; the total number of charge developed on clay 

particles was more than that developed on organic matter due to lower quantity. Clay fraction 

has more surface area than silt fraction, which account for clay having more charge 

development and higher contribution to CEC than silt fraction in the study area. 

  

 
Table 3: Independent Variable Importance 

Independent Variable Importance Normalized 

Importance 

clay 5.788 100.0% 

OC 1.294 22.4% 

silt 1.240 21.4% 

pH .561 9.7% 

Growing Method: CRT 

Dependent Variable: CEC 
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Fig1: Independent Variable Importance 

3: PREDICTION MODEL OF CEC USING REGRESSION TREE 

The regression tree model of CEC of the study area is presented in Table 4 and Figure 2. The 

prediction model showed that clay fraction less than or equal to 2.2 % predicted CEC of 1.97 

cmol/kg (node 1) in the study area. Clay fraction of greater than 2.2 % combined with silt of 

less than or equal to 3.2 %  to predict  CEC of 11. 5 cmol/kg (node 3).Organic carbon of less 

than or equal to 4.3 %, combined with clay of less than or equal to 5.15% predicted a mean 

ECEC of 40.2 cmol/kg (node 3). Organic carbon content of less than or equal to 4.3% 

combined with clay of greater than 5.12 % and silt less than or equal to 3.75 % predicted a 

mean ECEC of 17.8 cmol/kg (node 5). Organic carbon content of less than or equal to 4.3% 
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combined with clay of greater than 5.12 % and silt of greater than 3.75 % predicted a mean 

ECEC of 24.3 cmol/kg (node 6). The organic carbon being the significant 
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prediction of ECEC in the study area within 100 cm soil depth could be attributed to coarse texture soil of the study area with coastal plain sand, 

beach ridge sand, sandstone / shale as parent materials. Soils low in clay (< 15 %) are much more dependent on soil organic matter to provide 

CEC and biotic processes dominate, whereas soils high in clay (>35 %), biotic processes are minimal (Oades, 1993).      

Table 4: Classification tree model 

 

Tree Table 

Node Mean Std. Deviation N Percent Predicted Mean Parent Node Primary Independent Variable 

Variable Improvement Split Values 

0 8.8881 4.02052 75 100.0% 8.8881     

1 1.9729 .25934 7 9.3% 1.9729 0 clay 4.923 <= 2.200 

2 9.6000 3.51239 68 90.7% 9.6000 0 clay 4.923 > 2.200 

3 11.4784 3.65150 19 25.3% 11.4784 2 silt 1.240 <= 3.200 

4 8.8716 3.20654 49 65.3% 8.8716 2 silt 1.240 > 3.200 

5 5.4243 2.57305 7 9.3% 5.4243 4 OC 1.294 <= .676 

6 9.4462 2.94980 42 56.0% 9.4462 4 OC 1.294 > .676 

7 9.8662 2.84109 37 49.3% 9.8662 6 clay .731 <= 22.530 

8 6.3380 1.68351 5 6.7% 6.3380 6 clay .731 > 22.530 

Growing Method: CRT 

Dependent Variable: CEC 
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Fig.2: Graphical presentation of tree model 
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4.0: MAPPING OF ECEC USING REGRESSION TREE 

Partitioning of the data space is shown in Figure 3 while Figure 4 shows the predicted map 

of ECEC of the study area. Node 2 with mean ECEC of 32.4 cmol/kg is located within the 

sandstone parent material while node 3 with mean ECEC of 40.2 cmol/kg is located within 

the shale parent material. Node 5 with mean ECEC of 17.8 cmol/kg is located within the 

beach ridge sand parent material while node 6 with mean ECEC of 24.3 cmol/kg is located 

within the coastal plain sand parent material. The model showed that organic carbon 

content was the only significant predictor of ECEC in sandstone soil while organic carbon 

in combination with clay made significant prediction of ECEC in shale parent material. In 

coastal plain sand and beach ridge sand soils, Organic carbon in combination with clay and 

silt made significant prediction of ECEC. 

                                               Node 2: 

                                              Mean ECEC = 32.4 cmol/kg 

                                           .> 4.3 % organic carbon 

Node 3: 

 

 

Mean ECEC=40.2 

cmol/kg 

<= 4.3 % organic carbon, 

<= 5.15 % clay 

                  

 

                Node 5: Mean ECEC = 17.8 cmol/kg 

.                 <= 4.3 % organic carbon, <= 5.15 % clay 

                 < 3.75 % silt 

                  

                      Node 6: Mean ECEC = 24.3 cmol/kg 

.                 <= 4.3 % organic carbon,  > 5.15 % clay, 

                        > 3.75 % silt 

 Fig. 3: Partition of the data space 
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  Fig.4: Predicted map of ECEC in the study area 

5.0:  EVALUATION OF THE MODEL 

A plot of measured values on tha Y-axis and pedicted values in tha X-axis is shown in Fig. 

5. The r2 of the plot of  measured  ECEC values on tha Y-axis and pedicted values in tha X-

axis was 1.0, indicating  that the predicted values at the node were exact or very close to the 

actual values. This shows hat the model is a good model and provides information. But the  

risk estimate shown in Table 5, which is a measure of the within-node variance 

(unexplained variance) which is an indicator of model performance showed that the 

proportion of the variance explain by the model is 29%. The computations were as follows:  

total variance = within-node (error) variance (unexplained variance) + between node 
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variance (explained variance). The within-node variance is the risk estimate value which is 

111.87 (Table 5). Total variance is the variance for the dependent variable before 

consideration of any independent variables, which is the variance at the root node. The 

standard deviation displayed at the root node is 12.510; so the total variance is the square of 

12.510 = 156.50. The proportion of variance due to error (unexplained variance) = 

111.87/156.50 = 0.71. The proportion of the variance explains by the model 1-0.71 = 0.29 

or 29%. The low proportion of variance explain by the model could be attributed to the use 

of ECEC instead of CEC for computation. In this study ECEC was computed from the 

summing up of exchangeable cations   and exchangeable acidity instead of direct 

determination of CEC. 

 

Table 5: Miscalculation Risk 

Method Estimate Std. 

Error 

Resubstitution 7.761 1.555 

Cross-

Validation 
15.178 2.687 

Growing Method: CRT 

Dependent Variable: CEC 
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Fig. 5: Plot of measured mean ECEC vs predicted mean ECEC 

 

6.0: Surrogates 

The surrogate table (Table 6) indicates how surrgates were used in the model. For any 

missing value of organic carbon, soil pH was used as the surrogate predictor although it has 

a fairly low association value of only 0.04. For any missing value of clay, silt was used as 

the surrogate predictor, since this variable has a fairly moderate association of 0.4 with 

clay. Also clay was used as surrogate predictor for silt, and organic carbon for pH. 

 

Table 6: Surrogates 

Parent Node Independent Variable Improvement Association 

0 Primary clay 4.923  

2 

Primary silt 1.240  

Surrogate 
clay .134 .211 

OC .000 .211 

4 
Primary OC 1.294  

Surrogate pH .561 .286 

6 Primary clay .731  

Growing Method: CRT 

Dependent Variable: CEC 
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Conclusion 

The study revealed that ECEC can be predicted using soil organic carbon, clay, silt and soil 

pH in the study area. The results of independent variable importance to the model showed 

that organic carbon was the most significant predictor of ECEC, followed by clay, followed 

by silt while soil pH was the least predictor of ECEC in the study area. Based on the model, 

organic carbon content was the only significant predictors of  ECEC in sandstone soil while 

organic carbon in combination with clay were the predictors of  ECEC in soils developed 

from shale parent material. In coastal plain sand and beach ridge sand soils, organic carbon 

in combination with clay and silt were the predictors of ECEC. The model showed that 

organic carbon content was the only significant predictor of ECEC within 100 cm soil 

depth in the study area due to coarse texture of the soil (less than 15 % clay within 100cm 

soil depth).  In the application of the model, independent variables included in the final 

model and measured in the same unit should be used. 
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